[1]
G. Huang, F. Chen, D. Wei, X. Zhang and G. Chen, Biodiesel production by microalgal biotechnology, Appl Energy. 87 (2010) 38-46.
DOI: 10.1016/j.apenergy.2009.06.016
Google Scholar
[2]
X. Meng, J. Yang, X. Xu, L. Zhang, Q. Nie and M. Xian, Biodiesel production from oleaginous microorganisms, Renew energ. 34 (2009) 1-5.
DOI: 10.1016/j.renene.2008.04.014
Google Scholar
[3]
J.M. Girard, M.L. Roy, M.B. Hafsa, J. Gagnon, N. Faucheux, M. Heitzand J. S. Deschênes,. Mixotrophic cultivation of green microalgaeScenedesmus obliquuson cheese whey permeate for biodiesel production, Algal Res. (2014).
DOI: 10.1016/j.algal.2014.03.002
Google Scholar
[4]
C.Y. Chen, K.L. Yeh, R. Aisyah, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour Technol. 102(2011) 71-81.
DOI: 10.1016/j.biortech.2010.06.159
Google Scholar
[5]
F.J. Marquez, K. Sasaki, T. Kakizono, N. Nishio andS. Nagai, Growth characteristics ofSpirulina platensis in mixotrophic and heterotrophic conditions, JFerm Bioeng. 76 (1993) 408-410.
DOI: 10.1016/0922-338x(93)90034-6
Google Scholar
[6]
Z.Y. Liu, G.C. Wang and B.C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour Technol. 99 (2008), 4717-4722.
DOI: 10.1016/j.biortech.2007.09.073
Google Scholar
[7]
X. Yu, P. Zhao, C. He, J. Li, X. Tang, J. Zhou and Z. Huang, Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock, Bioresour Technol. 121 (2012) 256-262.
DOI: 10.1016/j.biortech.2012.07.002
Google Scholar
[8]
T. Heredia-Arroyo, W. Wei and B. Hu, Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides, Appl biochem biotech. 162 (2010), 1978-(1995).
DOI: 10.1007/s12010-010-8974-4
Google Scholar
[9]
T. Goksan, I. Ak and S. Gokpinar, An alternative approach to the traditional mixotrophic cultures of Haematococcus pluvialis Flotow (Chlorophyceae), J microbial biotechn. 20 (2010), 1276-1282.
DOI: 10.4014/jmb.0909.09005
Google Scholar
[10]
W. Xiong, X. Li, J. Xiang and Q. Wu, High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechn, 78 (2008), 29-36.
DOI: 10.1007/s00253-007-1285-1
Google Scholar
[11]
H. Xu, X. Miao and Q. Wu, High quality biodiesel production from a microalgaChlorella protothecoides by heterotrophic growth in fermenters, J Biotechn. 126 (2006) 499-507.
DOI: 10.1016/j.jbiotec.2006.05.002
Google Scholar
[12]
C. Gao, Y. Zhai, Y. Ding and Q. Wu, Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides, Appl Energ. 87 (2010) 756-761.
DOI: 10.1016/j.apenergy.2009.09.006
Google Scholar
[13]
M. Sun, J. Nie, W. Yuan, F. Zhang, Z. Fang, H. Huang and S. Bao, Screening and identification of oil-rich marine microalgae and effects of Fe3+on its growth and oil accumulation. China Oils and Fats. 12 (2012) 019.
Google Scholar
[14]
A. Kosakowska, M. Nędzi and J. Pempkowiak, Responses of the toxic cyanobacteriumMicrocystis aeruginosa to iron and humic substances, Plant Physiol Bioch. 45 (2007) 365-370.
DOI: 10.1016/j.plaphy.2007.03.024
Google Scholar
[15]
K.P. Michel and E.K. Pistorius, Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA, PhysiolPlantarum. 120(2004) 36-50.
DOI: 10.1111/j.0031-9317.2004.0229.x
Google Scholar
[16]
M. Wan, P. Liu, J. Xia, J.N. Rosenberg, G.A. Oyler, M.J. Betenbaugh and G. Qiu, The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana, Appl microbiol biotechn. 91 (2011).
DOI: 10.1007/s00253-011-3399-8
Google Scholar
[17]
L. Huang, J. Xu, T. Li,L. Wang, T. Deng and X. Yu, Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions, Ann Microbiol. (2013). 1-10.
DOI: 10.1007/s13213-013-0768-9
Google Scholar