Numerical Simulation of Turbulence-Chemical Interaction Models on Combustible Particle MILD Combustion

Article Preview

Abstract:

Typical combustible particle coal has been analyzed by using turbulence-chemistry interaction models to realize which models are more accurate and reasonable on pulverized coal MILD combustion. Three turbulence-chemistry interaction models are examined: the Equilibrium Mixture Fraction/PDF (PDF), the Eddy Break Up (EBU), the Eddy Dissipation Concept (EDC). All of three models can give a suitable prediction of axial velocity on combustible particle coal MILD combustion because turbulence-chemistry interaction models have little influence on flow field and flow structure. The Eddy Dissipation Concept model (EDC), based on advanced turbulence-chemistry interaction with global and detailed kinetic mechanisms can produce satisfactory results on chemical and fluid dynamic behavior of combustible particle coal MILD combustion, especially on temperature and species concentrations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1070-1072)

Pages:

1752-1757

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

Ā© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cavaliere A, Joannon M. Mild combustion. Prog Energy Combust Sci, 2004, 30(4): 329-366.

Google Scholar

[2] Tsuji H. High temperature air combustion: from energy conservation to pollution reduction, 2003, 4: CRC.

Google Scholar

[3] Weber R,Smart J P,Kamp W V. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air [J]. Proceedings of the Combustion Institute,2005,30 (2) 2623-2629.

DOI: 10.1016/j.proci.2004.08.101

Google Scholar

[4] Schaffel N,Mancini M,Szlek A,et al. Mathematical modeling of MILD combustion of pulverized coal[J]. Combustion and Flame,2009,156 (9): 1771-1784.

DOI: 10.1016/j.combustflame.2009.04.008

Google Scholar

[5] Suda T, Takafuji M, Hirata T, et al. A study of combustion behavior of pulverized coal in high temperature air [J]. Proceedings of the Combustion Institute,2002,29 (1): 503-509.

DOI: 10.1016/s1540-7489(02)80065-7

Google Scholar

[6] He R, Suda T, Takafuji M, et al. Analysis of low NO emission in high temperature air combustion for pulverized coal [J]. Fuel,2004,83 (9): 1133-1141.

DOI: 10.1016/j.fuel.2003.12.010

Google Scholar

[7] Kim J.P., U. Schnell, G. Scheffknecht, et al. Numerical modelling of MILD combustion for coal. Progress in Computational Fluid Dynamics, 2007, 7 (6): 337~346.

DOI: 10.1504/pcfd.2007.014683

Google Scholar

[8] Vascellari M, Cau G. Influence of turbulence-chemical interaction on CFD pulverized coal MILD combustion modeling [J]. Fuel, 2012, 101: 90-101.

DOI: 10.1016/j.fuel.2011.07.042

Google Scholar

[9] N. Schaffel, M. Mancini, A. Szlek, R. Weber. Mathematical modeling of MILD combustion of pulverized coal. Combustion and Flame, 2009, 156, 1771-1784.

DOI: 10.1016/j.combustflame.2009.04.008

Google Scholar

[10] Jones W , Lindstedt. Global Reaction Schemes for Hydrocarbon Combustion [J]. Combustion and Flame, 1988, 73 (3): 233-249.

DOI: 10.1016/0010-2180(88)90021-1

Google Scholar

[11] Orsino S, Tamura M, Stabat P, et al. Excess Enthaply Combustion of Coal[R]. Tech. Rep. IFRF Doc. No. f46/y/3, IFRF; (2000).

Google Scholar