A Novel Adaptive Preconditioner Based CPF-GMRES Algorithm

Article Preview

Abstract:

This paper presents a novel CPF-GMRES algorithm based on an adaptive preconditioner to overcome the computational bottleneck in the analysis of large-scale power system voltage stability with CPF. Considering the combination details of CPF and GMRES, an adaptive preconditioning structure is proposed to reduce the formation times of preconditioner. Initialize the preconditioning matrix in the predictor of CPF, and modify it with Broyden method in the corrector. Large number add-in strategy and a replenished one are applied to deal with the influence of PVPQ bus-type switching. Numerical results with IEEE 118-bus test system and a real power grid verify the effectiveness of the proposed algorithm, and indicate that a remarkable speed advantage is obtained compared with the conventional CPF-GMRES with the preconditioner of ILU factorization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1070-1072)

Pages:

731-738

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Iba, H. Suzuki, M. Egawa and T. Watanabe, Calculation of Critical Loading Condition with Nose Curve Using Homotopy Continuation Method, IEEE Trans. On Power Systems, Vol. 6, NO. 2, 1991, p.584~593.

DOI: 10.1109/59.76701

Google Scholar

[2] V. Ajjarupu and C. Christy, The Continuation Power Flow: a Tool for Steady State Voltage Stability Analysis, IEEE Trans. On Power Systems, Vol. 7, NO. 1, 1992, pp.416-423.

DOI: 10.1109/59.141737

Google Scholar

[3] H. D. Chiang, A. J. Flueck, K. S. Shah and N. Balu, CPFLOW: a Practical Tool for Tracing Power System Steady-state Stationary Behavior due to Load and Generation Variations, IEEE Trans. On Power Systems, Vol. 10, NO. 2, 1995, pp.623-634.

DOI: 10.1109/59.387897

Google Scholar

[4] A. J. Flueck and J. R. Dondeti, A New Continuation Power Flow Tool for Investigating the Nonlinear Effects of Transmission Branch Parameter Variations, IEEE Trans. On Power Systems, Vol. 15, NO. 1, 2000, p.223~227.

DOI: 10.1109/59.852125

Google Scholar

[5] J.Q. Zhao, H. D. Chiang and H. Li, A New Contingency Parameterization CPF Model and Sensitivity Method for Voltage Stability Control, IEEE Power Engineering Society General Meeting, San Francisco, U.S.A., 12-16 June 2005, pp.1681-1687.

DOI: 10.1109/pes.2005.1489420

Google Scholar

[6] X.P. Zhang, P. Ju and E.J. Handschin, Continuation Three-Phase Power Flow: A Tool for Voltage Stability Analysis of Unbalanced Three-Phase Power Systems, IEEE Trans. On Power Systems, Vol. 20, NO. 3, 2005, p.1320 – 1329.

DOI: 10.1109/tpwrs.2005.851950

Google Scholar

[7] A. Dukpa, B. Venkatesh and M. El-Hawary, Application of Continuation Power Flow Method in Radial Distribution Systems, Electric Power Systems Research, Vol. 79, NO. 11, 2009, pp.1503-1510.

DOI: 10.1016/j.epsr.2009.05.003

Google Scholar

[8] A.B. Neto and D.A. Alves, Improved Geometric Parameterisation Techniques for Continuation Power Flow, IET generation, transmission & distribution, Vol. 4, NO. 12, 2010, pp.1349-1359.

DOI: 10.1049/iet-gtd.2010.0048

Google Scholar

[9] P. Xu, X. Wang and V. Ajjarapu, Continuation Power Flow With Adaptive Stepsize Control via Vonvergence Monitor, IET generation, transmission & distribution, Vol. 6, NO. 7, 2012, pp.673-679.

DOI: 10.1049/iet-gtd.2011.0573

Google Scholar

[10] Y. Saad and M. H. Schultz, GMRES: a Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on scientific and statistical computing, Vol. 7, NO. 3 1986, pp.856-869.

DOI: 10.1137/0907058

Google Scholar

[11] A. J. Flueck and H. D. Chiang, Solving the Nonlinear Power Flow Equations With a Newton Process and GMRES, IEEE International Symposium on Circuits and Systems, 15 May 1996, pp.657-660.

DOI: 10.1109/iscas.1996.540033

Google Scholar

[12] A. Semlyen, Fundamental Concepts of a Krylov Subspace Power Flow Methodology, IEEE Trans. On Power Systems, Vol. 11, NO. 3, 1996, pp.1528-1537.

DOI: 10.1109/59.535694

Google Scholar

[13] A. J. Flueck and H. D. Chiang, Solving the Nonlinear Power Flow Equations With an Inexact Newton Method Using GMRES, IEEE Trans. On Power Systems, Vol. 13, No. 2, 1998, pp.267-273.

DOI: 10.1109/59.667330

Google Scholar

[14] Y. Zhang and H. D. Chiang, Fast Newton-FGMRES Solver for Large-scale Power Flow Study, IEEE Trans. On Power Systems, Vol. 25, NO. 2, 2010, pp.769-776.

DOI: 10.1109/tpwrs.2009.2036018

Google Scholar

[15] Y. Chen, C. Shen and J. Wang, Distributed Transient Stability Simulation of Power Systems Based on a Jacobian-free Newton-Gmres Method, IEEE Trans. On Power Systems, Vol. 24, NO. 1, 2009, pp.146-156.

DOI: 10.1109/tpwrs.2008.2009393

Google Scholar

[16] W. Xu and W. Li, Efficient Preconditioners for Newton-GMRES Method With Application to Power Flow Study, IEEE Trans. On Power Systems, Vol. 28, NO. 4, 2013, pp.4173-4180.

DOI: 10.1109/tpwrs.2013.2267782

Google Scholar

[17] H. Mori and K. Seki, Continuation Newton-GMRES Power Flow With Linear and Nonlinear Predictors,. Large Engineering Systems conference on Power Engineering, Montreal, Quebec, Canada, 2007, pp.171-175.

DOI: 10.1109/lescpe.2007.4437373

Google Scholar

[18] J. Jasni, N. Azis, H. Hizam, et al. An Efficient Generalized Minimized Residual Simulation Technique for Continuation Power Flow Studies, Asian Journal of Applied Sciences, Vol. 1, NO. 2, 2008, pp.136-146.

DOI: 10.3923/ajaps.2008.136.146

Google Scholar

[19] J. Jasni, H. Hizam, M. Z. A. Kadir, et al. Determination of Proximity to Static Voltage Collapse Using CPF-GMRES, IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia 1-3 December, 2008, pp.520-525.

DOI: 10.1109/pecon.2008.4762521

Google Scholar

[20] M. Eidiani, H. Zeynal, A. K. Zadeh, et al, Voltage Stability Assessment: an Approach With Expanded Newton Raphson-Sydel, 5th International Power Engineering and Optimization Conference, Shah Alam, Selangor, Malaysia, 6-7 June 2011, pp.31-35.

DOI: 10.1109/peoco.2011.5970424

Google Scholar

[21] J. Q. Zhao, H. D. Chiang and B. M. Zhang, Study on PV-PQ Bus Type Switching Logic in Power Flow Computation, Proceedings of the CSEE, Vol 25, NO. 1, 2005, pp.54-59. (In Chinese).

Google Scholar