[1]
K. Iba, H. Suzuki, M. Egawa and T. Watanabe, Calculation of Critical Loading Condition with Nose Curve Using Homotopy Continuation Method, IEEE Trans. On Power Systems, Vol. 6, NO. 2, 1991, p.584~593.
DOI: 10.1109/59.76701
Google Scholar
[2]
V. Ajjarupu and C. Christy, The Continuation Power Flow: a Tool for Steady State Voltage Stability Analysis, IEEE Trans. On Power Systems, Vol. 7, NO. 1, 1992, pp.416-423.
DOI: 10.1109/59.141737
Google Scholar
[3]
H. D. Chiang, A. J. Flueck, K. S. Shah and N. Balu, CPFLOW: a Practical Tool for Tracing Power System Steady-state Stationary Behavior due to Load and Generation Variations, IEEE Trans. On Power Systems, Vol. 10, NO. 2, 1995, pp.623-634.
DOI: 10.1109/59.387897
Google Scholar
[4]
A. J. Flueck and J. R. Dondeti, A New Continuation Power Flow Tool for Investigating the Nonlinear Effects of Transmission Branch Parameter Variations, IEEE Trans. On Power Systems, Vol. 15, NO. 1, 2000, p.223~227.
DOI: 10.1109/59.852125
Google Scholar
[5]
J.Q. Zhao, H. D. Chiang and H. Li, A New Contingency Parameterization CPF Model and Sensitivity Method for Voltage Stability Control, IEEE Power Engineering Society General Meeting, San Francisco, U.S.A., 12-16 June 2005, pp.1681-1687.
DOI: 10.1109/pes.2005.1489420
Google Scholar
[6]
X.P. Zhang, P. Ju and E.J. Handschin, Continuation Three-Phase Power Flow: A Tool for Voltage Stability Analysis of Unbalanced Three-Phase Power Systems, IEEE Trans. On Power Systems, Vol. 20, NO. 3, 2005, p.1320 – 1329.
DOI: 10.1109/tpwrs.2005.851950
Google Scholar
[7]
A. Dukpa, B. Venkatesh and M. El-Hawary, Application of Continuation Power Flow Method in Radial Distribution Systems, Electric Power Systems Research, Vol. 79, NO. 11, 2009, pp.1503-1510.
DOI: 10.1016/j.epsr.2009.05.003
Google Scholar
[8]
A.B. Neto and D.A. Alves, Improved Geometric Parameterisation Techniques for Continuation Power Flow, IET generation, transmission & distribution, Vol. 4, NO. 12, 2010, pp.1349-1359.
DOI: 10.1049/iet-gtd.2010.0048
Google Scholar
[9]
P. Xu, X. Wang and V. Ajjarapu, Continuation Power Flow With Adaptive Stepsize Control via Vonvergence Monitor, IET generation, transmission & distribution, Vol. 6, NO. 7, 2012, pp.673-679.
DOI: 10.1049/iet-gtd.2011.0573
Google Scholar
[10]
Y. Saad and M. H. Schultz, GMRES: a Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on scientific and statistical computing, Vol. 7, NO. 3 1986, pp.856-869.
DOI: 10.1137/0907058
Google Scholar
[11]
A. J. Flueck and H. D. Chiang, Solving the Nonlinear Power Flow Equations With a Newton Process and GMRES, IEEE International Symposium on Circuits and Systems, 15 May 1996, pp.657-660.
DOI: 10.1109/iscas.1996.540033
Google Scholar
[12]
A. Semlyen, Fundamental Concepts of a Krylov Subspace Power Flow Methodology, IEEE Trans. On Power Systems, Vol. 11, NO. 3, 1996, pp.1528-1537.
DOI: 10.1109/59.535694
Google Scholar
[13]
A. J. Flueck and H. D. Chiang, Solving the Nonlinear Power Flow Equations With an Inexact Newton Method Using GMRES, IEEE Trans. On Power Systems, Vol. 13, No. 2, 1998, pp.267-273.
DOI: 10.1109/59.667330
Google Scholar
[14]
Y. Zhang and H. D. Chiang, Fast Newton-FGMRES Solver for Large-scale Power Flow Study, IEEE Trans. On Power Systems, Vol. 25, NO. 2, 2010, pp.769-776.
DOI: 10.1109/tpwrs.2009.2036018
Google Scholar
[15]
Y. Chen, C. Shen and J. Wang, Distributed Transient Stability Simulation of Power Systems Based on a Jacobian-free Newton-Gmres Method, IEEE Trans. On Power Systems, Vol. 24, NO. 1, 2009, pp.146-156.
DOI: 10.1109/tpwrs.2008.2009393
Google Scholar
[16]
W. Xu and W. Li, Efficient Preconditioners for Newton-GMRES Method With Application to Power Flow Study, IEEE Trans. On Power Systems, Vol. 28, NO. 4, 2013, pp.4173-4180.
DOI: 10.1109/tpwrs.2013.2267782
Google Scholar
[17]
H. Mori and K. Seki, Continuation Newton-GMRES Power Flow With Linear and Nonlinear Predictors,. Large Engineering Systems conference on Power Engineering, Montreal, Quebec, Canada, 2007, pp.171-175.
DOI: 10.1109/lescpe.2007.4437373
Google Scholar
[18]
J. Jasni, N. Azis, H. Hizam, et al. An Efficient Generalized Minimized Residual Simulation Technique for Continuation Power Flow Studies, Asian Journal of Applied Sciences, Vol. 1, NO. 2, 2008, pp.136-146.
DOI: 10.3923/ajaps.2008.136.146
Google Scholar
[19]
J. Jasni, H. Hizam, M. Z. A. Kadir, et al. Determination of Proximity to Static Voltage Collapse Using CPF-GMRES, IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia 1-3 December, 2008, pp.520-525.
DOI: 10.1109/pecon.2008.4762521
Google Scholar
[20]
M. Eidiani, H. Zeynal, A. K. Zadeh, et al, Voltage Stability Assessment: an Approach With Expanded Newton Raphson-Sydel, 5th International Power Engineering and Optimization Conference, Shah Alam, Selangor, Malaysia, 6-7 June 2011, pp.31-35.
DOI: 10.1109/peoco.2011.5970424
Google Scholar
[21]
J. Q. Zhao, H. D. Chiang and B. M. Zhang, Study on PV-PQ Bus Type Switching Logic in Power Flow Computation, Proceedings of the CSEE, Vol 25, NO. 1, 2005, pp.54-59. (In Chinese).
Google Scholar