[1]
Chongqing Kang,Qing Xia and Mei Liu.Power System Load Forecasting:China Electric Power Press, Beijing,2007.
Google Scholar
[2]
Mandal J K,Sinha A K.Artificial neural network based hourly load forecasting for decentralized load management.Proceedings of International Conference on Energy Management and Power Delivery,EMPD-95,1995.61-66.
DOI: 10.1109/empd.1995.500701
Google Scholar
[3]
Wang Zhiyong,GUO Chuangxin,CAO Yijia.A Method for Short Tterm Load Forecasting Intergrating Fuzzy-Rough Set with Artificial Neural Network[J].Proceedings of the CSEE,2005, 25(19):7-11.
Google Scholar
[4]
Daneshdoost M,Lotfalian M,Bumroonggit G,et al.Neural network with fuzzy set-based classification for short-term load forecasting [J].IEEE Transactions on Power Systems,1998, 13(4):1386-1391.
DOI: 10.1109/59.736281
Google Scholar
[5]
LI Yuancheng,FANG Tingjian,YU Erkeng.Study of Support Vector Machines for Short-Term Load Forecasting.Proceedings of the CSEE,2003(06):55-59.
DOI: 10.1109/icpst.2002.1053540
Google Scholar
[6]
HUO Ming,LUO Diansheng,HE Jinglong.Chaos Optimization Method of SVM Parameters Selection for Short-term Load Forecasting[J].Proceedings of the CSU-EPSA,2009(05): 124-128.
Google Scholar
[7]
LU Ning,WU Benling,LIU Ying.Application of support vector machine model in load forecasting based on adaptive particle swarm optimization[J].Power System Protection an Control, 2011(15):43-46+51.
Google Scholar
[8]
NIU Dongxiao,GU Zhihong,XING Mian,et al.Study on Forecasting Approach to Short-Term Load of SVM Based on Data Mining [J].Proceedings of the CSEE,2006(18):6-12.
Google Scholar
[9]
Abu-El-Magd M A,Sinha N K.Two New Algorithms for On-Line Modelling and Forecasting of the Load Demand of a Multinode Power System[J]. IEEE transactions on power apparatus and systems, PAS-100(7):3246-3253.
DOI: 10.1109/tpas.1981.316653
Google Scholar
[10]
Abu-El-Magd M A,Sinha N K.Univariate and multivariate time series techniques for modeling and forecasting short-term load demand.in IFAC Symposium on Theory and Application of Digital Control.1982.329-334.
DOI: 10.1016/b978-0-08-027618-2.50056-5
Google Scholar
[11]
Han Xueshan, Han Li, Gooi H. B, Pan Zhiyuan. Ultra short-term multi-node load forecasting - a composite approach [J] Generation, Transmission & Distribution, IET, 2013, 5(6): 436-444.
DOI: 10.1049/iet-gtd.2011.0524
Google Scholar
[12]
ZHANG Zhigang,XIA Qing.Architecture and Key Technologies for Generation Scheduling of Smart Grid[J].Power System Technology,2009(20):1-8.
Google Scholar
[13]
DU Guihe,WANG Zhengfeng.Design and research on power network dispatching integration of smart grid[J].Power System Protection and Control,2010(15):127-131.
Google Scholar
[14]
MU Tao,KANG Chongqing,XIA Qing,et al.Power System Multilevel Load Forecasting and Coordinating Part Three Correlative Coordinating Model[J].Automation of Electric Power Systems,2008,391(09);20-24.
Google Scholar
[15]
Suykens J A K,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3): 293-300.
Google Scholar
[16]
A.J. Smola.Learning with kernels:[D].Berlin:Technical University of Berlin,1998.
Google Scholar
[17]
WU Qiong,YANG Yihan,LIU Wenying.Electric Power System Transient Stability On-line Prediction Based on Least Squares Support Vector Machine[J].Proceedings of the CSEE,2007,27(25):38-43.
Google Scholar
[18]
Kang Chongqing, Xia Qing, Shen Yu, et al. Integrated model of power system load forecasting [J]. Journal of Tsinghua university (natural science edition), 1999, 39(1): 8-11.
Google Scholar