Insulation and Energy-Saving Technology for the External Wall of Residential Building

Article Preview

Abstract:

The text elaborates on the significance and profile of insulation system for external wall of residential buildings in our country, makes comprehensive comparison among the external wall's self-insulation system, external wall's internal insulation system, sandwich composite insulation system and external wall's external insulation system, and reveals that the external wall's external insulation system has the advantage of strong feasibility, law cost, effective heat insulation break bridge and protective structure, which offers great potential for existing buildings in energy-saving rebuilding, thus finding a widest application and enjoying a promising market prospects.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

1263-1270

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Perez-Lombard, Luis, Jose Ortiz, and Christine Pout. A review on buildings energy consumption information., Energy and buildings 40. 3 (2008): 394-398.

DOI: 10.1016/j.enbuild.2007.03.007

Google Scholar

[2] Li, Baizhan, and Runming Yao. Urbanisation and its impact on building energy consumption and efficiency in China., Renewable Energy 34. 9 (2009): 1994-(1998).

DOI: 10.1016/j.renene.2009.02.015

Google Scholar

[3] Leung, Guy CK. China's energy security: Perception and reality., Energy Policy 39. 3 (2011): 1330-1337.

DOI: 10.1016/j.enpol.2010.12.005

Google Scholar

[4] Cai, W. G., Wu, Y., Zhong, Y., & Ren, H. China building energy consumption: situation, challenges and corresponding measures., Energy Policy 37. 6 (2009): 2054-(2059).

DOI: 10.1016/j.enpol.2008.11.037

Google Scholar

[5] Sinton, Jonathan E., and David G. Fridley. What goes up: recent trends in China's energy consumption., Energy policy 28. 10 (2000): 671-687.

DOI: 10.1016/s0301-4215(00)00053-7

Google Scholar

[6] Li, Jun, and Michel Colombier. Managing carbon emissions in China through building energy efficiency., Journal of Environmental Management 90. 8 (2009): 2436-2447.

DOI: 10.1016/j.jenvman.2008.12.015

Google Scholar

[7] Yao, Runming, Baizhan Li, and Koen Steemers. Energy policy and standard for built environment in China., Renewable Energy 30. 13 (2005): 1973-(1988).

DOI: 10.1016/j.renene.2005.01.013

Google Scholar

[8] Kambara, Tatsu, Tatsu Kambara, and Christopher Howe. China and the global energy crisis: development and prospects for China's oil and natural gas. Edward Elgar Publishing, (2007).

DOI: 10.1017/s0305741007001853

Google Scholar

[9] Zheng, Y. H., Li, Z. F., Feng, S. F., Lucas, M., Wu, G. L., Li, Y., .. & Jiang, G. M. (2010).

Google Scholar

[10] DeCanio, Stephen J. The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments., Energy policy 26. 5 (1998): 441-454.

DOI: 10.1016/s0301-4215(97)00152-3

Google Scholar

[11] Doukas, Haris, Christos Nychtis, and John Psarras. Assessing energy-saving measures in buildings through an intelligent decision support model., Building and environment 44. 2 (2009): 290-298.

DOI: 10.1016/j.buildenv.2008.03.006

Google Scholar

[12] Qi, Feng, and Cheng Guodong. Current situation, problems and rational utilization of water resources in arid north-western China., Journal of Arid Environments 40. 4 (1998): 373-382.

DOI: 10.1006/jare.1998.0456

Google Scholar

[13] Pimentel, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., .. & Alpert, S. Water resources: agriculture, the environment, and society., BioScience 47. 2 (1997): 97-106.

DOI: 10.2307/1313020

Google Scholar

[14] Stahel, Walter. The utilization-focused service economy: Resource efficiency and product-life extension., The greening of industrial ecosystems(1994): 178-190.

Google Scholar

[15] Banfi, S., Farsi, M., Filippini, M., & Jakob, M. Willingness to pay for energy-saving measures in residential buildings., Energy economics 30. 2 (2008): 503-516.

DOI: 10.1016/j.eneco.2006.06.001

Google Scholar

[16] Li, Jun. Towards a low-carbon future in China's building sector—A review of energy and climate models forecast., Energy Policy 36. 5 (2008): 1736-1747.

DOI: 10.1016/j.enpol.2008.01.029

Google Scholar

[17] Sisman, Nuri, et al. Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions., Energy Policy 35. 10 (2007): 5151-5155.

DOI: 10.1016/j.enpol.2007.04.037

Google Scholar

[18] Zhao, Jing, Neng Zhu, and Yong Wu. Technology line and case analysis of heat metering and energy efficiency retrofit of existing residential buildings in Northern heating areas of China., Energy policy 37. 6 (2009): 2106-2112.

DOI: 10.1016/j.enpol.2008.11.045

Google Scholar

[19] Muszynski, Larry C., and Michael R. Purcell. Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast., Journal of Composites for Construction 7. 2 (2003): 98-108.

DOI: 10.1061/(asce)1090-0268(2003)7:2(98)

Google Scholar

[20] Davidson, J. S., Fisher, J. W., Hammons, M. I., Porter, J. R., & Dinan, R. J. (2005). Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast. Journal of Structural Engineering, 131(8), 1194-1205.

DOI: 10.1061/(asce)0733-9445(2005)131:8(1194)

Google Scholar

[21] Velikhov, E. P., Vlasov, V. P., Volkov, V. G., Kolbasov, B. N., Murav'ev, E. V., Nedoseev, S. L., .. & Chernukha, V. Preliminary analysis of schemes of pulsed thermonuclear reactors operating with relativistic electron beams., Atomic Energy 45. 1 (1978).

DOI: 10.1007/bf01120586

Google Scholar

[22] Zhu, Yingxin, and Borong Lin. Sustainable housing and urban construction in China., Energy and Buildings 36. 12 (2004): 1287-1297.

DOI: 10.1016/j.enbuild.2003.11.007

Google Scholar

[23] Chow, T. T., W. He, and J. Ji. An experimental study of facade-integrated photovoltaic/water-heating system., Applied Thermal Engineering 27. 1 (2007): 37-45.

DOI: 10.1016/j.applthermaleng.2006.05.015

Google Scholar

[24] Hall, D. J., and B. L. Robson. A review of the design and materials evaluation programme for the GRP/foam sandwich composite hull of the RAN minehunter., Composites 15. 4 (1984): 266-276.

DOI: 10.1016/0010-4361(84)90707-9

Google Scholar

[25] Hudson, Craig W., Joe J. Carruthers, and A. Mark Robinson. Multiple objective optimisation of composite sandwich structures for rail vehicle floor panels., Composite Structures 92. 9 (2010): 2077-(2082).

DOI: 10.1016/j.compstruct.2009.10.018

Google Scholar

[26] Hasselman, D. P. H., and Lloyd F. Johnson. Effective thermal conductivity of composites with interfacial thermal barrier resistance., Journal of Composite Materials 21. 6 (1987): 508-515.

DOI: 10.1177/002199838702100602

Google Scholar

[27] Manz, H., Egolf, P. W., Suter, P., & Goetzberger, A. TIM–PCM external wall system for solar space heating and daylighting., Solar energy 61. 6 (1997): 369-379.

DOI: 10.1016/s0038-092x(97)00086-8

Google Scholar

[28] Çomaklı, Kemal, and Bedri Yüksel. Optimum insulation thickness of external walls for energy saving., Applied Thermal Engineering 23. 4 (2003): 473-479.

DOI: 10.1016/s1359-4311(02)00209-0

Google Scholar

[29] Ucar, Aynur, and Figen Balo. Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls., Renewable Energy 35. 1 (2010): 88-94.

DOI: 10.1016/j.renene.2009.07.009

Google Scholar

[30] Bolattürk, Ali. Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey., Applied thermal engineering 26. 11 (2006): 1301-1309.

DOI: 10.1016/j.applthermaleng.2005.10.019

Google Scholar