Development of Bacterial Consortia and Biodegradation Ability under Different PAH Stresses

Article Preview

Abstract:

The aims of the present work were simulating actual environmental pollution to select and compare the bacterial communities under different environmental stresses such as phenanthrene and pyrene. Two bacterial consortia named as Phe consortium and Pyr consortium were enriched from activated sludge obtained from a wastewater treatment plant. The PCR-DGGE analysis showed that the original active sludge harbored abundantly diverse PAH-degrading bacteria at first, then under different environmental pressures the consortium species tended to be concentrated and had species structure differences. In addition, the abilities of the two bacterial consortia to remediate a mixture of 4 PAHs (50 mg Kg-1 each) in soil were studied. Of the 4 PAHs, greater than 80% of the fluorene and phenanthrene in soil were removed by the Phe consortium in just 7-days respectively; whereas the Pyr-consortium could degrade over 60% of anthracene and pyrene.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

176-182

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.B. Hughes, D.M. Beckles, S.D. Chandra, C.H. Ward: J. Ind. Microbiol. Biotech. Vol. 18 (1997), pp.152-160.

Google Scholar

[2] C.E. Cerniglia: Curr. Opin. Biotech. Vol. 4 (1993), pp.331-338.

Google Scholar

[3] S.Y. Yuan, S.H. Wei, B.V. Chang: Chemosphere Vol. 41 (2000), pp.1463-1468.

Google Scholar

[4] L. Christine, R. Annemie, P. Frédéric, D. Ludo, D. Denis: Chemosphere Vol. 81 (2010), pp.1263-1271.

Google Scholar

[5] F.L. Sun, Y.S. Wang, C.C. Sun, Y.L. Peng, C. Deng: Ecotoxicology Vol. 21 (2012), pp.1651-1660.

Google Scholar

[6] C.L. Guo, H.W. Zhou, Y.S. Wong, N.F.Y. Tam: Mar. Pollut. Bull. Vol. 51 (2005), pp.1054-1061.

Google Scholar

[7] T. Hadibarata, R. A. Kristanti: Bioresour. Technol. Vol. 107 (2012), pp.314-318.

Google Scholar

[8] S.H. Yu, L. Ke, Y.S. Wong, N.F.Y. Tam: Environ. Int. Vol. 3 (2005), pp.149-154.

Google Scholar

[9] J.S. Seo, Y.S. Keum, R.M. Harada, Q. X. Li: J. Agr. Food Chem. Vol. 55 (2007), pp.5383-5389.

Google Scholar

[10] Y. Zhong, T.G. Luan, L. Lin, H. Liu, N.F.Y. Tam: Bioresour. Technol. Vol. 102 (2011), p.2965–2972.

Google Scholar

[11] C.L. Guo, Z. Dang, Y.S. Wong, N.F.Y. Tam: Int. Biodeter. Biodegr. Vol. 64 (2010), pp.419-426.

Google Scholar

[12] J. Zeng, X.G. Lin, J. Zhang, X.Z. Li: J. Hazard. Mater. Vol. 183 (2010), pp.718-723.

Google Scholar

[13] S.C. Wilson, K.C. Jones: Environ. Pollut. Vol. 81 (1993), pp.229-249.

Google Scholar

[14] J. Ma, L. Xu, L.Y. Jia: J. Environ. Sci. China Vol. 24 (2012), pp.2141-2148.

Google Scholar

[15] D.J. Vacca, W.F. Bleam, W.J. Hickey: Appl. Environ. Microb. Vol. 71 (2005), pp.3797-3805.

Google Scholar

[16] D. Ye, M.A. Siddiqi, A.E. Maccubbin, S. Kunar, H.C. Sikka: Environ. Sci. Technol. Vol. 30 (1996), pp.136-142.

Google Scholar

[17] H.J. Liu, C.Y. Yang, Y. Tian, G. H. Lin, T. L. Zheng: Int. Biodeter. Biodegr. Vol. 65 (2011), pp.269-275.

Google Scholar

[18] X. Li, P. Li, X. Lin, C. Zhang, Q. Li, Z. Gong: J. Hazard. Mater. Vol. 150 (2008), pp.21-26.

Google Scholar

[19] M.A. Heitkamp, C.E. Cerniglia: Environ. Toxicol. Chem. Vol. 6 (1987), p.535–546.

Google Scholar

[20] H. W. Zhou, T. Luan, G. F. Zou, N.F.Y. Tam: J. Hazard. Mater. Vol. 152 (2008), pp.1179-1185.

Google Scholar