Effects of Two Trypsin Inhibitors on Trypsin in Activity and Structure

Article Preview

Abstract:

Two reversible trypsin inhibitors, Kunitz trypsin inhibitor (KTI) and Bowman-Birk trypsin inhibitor (BBI) were compared to find the more optimal one as the inhibit factor during trypsin immobilization. Fluorescence spectroscopy, UV–visible absorption spectroscopy and circular dichroism (CD) spectroscopy were used to explore the effects of the two inhibitors on trypsin in activity and structure. The results showed that both inhibitors combined with trypsin in 1:1. CD circular dichroism spectroscopy showed that KTI and BBI led to different changes in trypsin second structure. The results can help us find out the mechanism between the two inhibitors and trypsin and select the more optimal inhibitor in trypsin immobilization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

1824-1827

Citation:

Online since:

December 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.A. Sheldon and S. van Pelt: Chem. Soc. Rev. Vol. 42 (2013), p.6223.

Google Scholar

[2] Z. Zhou and M. Hartmann: Top. Catal. 55 (2012), p.1081.

Google Scholar

[3] Z. Zhou, M. Hartmann: Chem. Soc. Rev. Vol. 42 (2013), p.3894.

Google Scholar

[4] M. Edmond: Chem. Soc. Rev. Vol. 42 (2013), p.6213.

Google Scholar

[5] R.A. Sheldon: Adv. Synth. Catal. Vol. 349 (2007), p.1289.

Google Scholar

[6] F. Lopez-Gallego and C. Schmidt-Dannert: Curr. Opin. Chem. Biol. Vol. 14 (2010), p.174.

Google Scholar

[7] U.T. Bornscheuer: Angew. Chem., Int. Ed. Vol. 42 (2003), p.3336.

Google Scholar

[8] Y. Zhang, Y. Li, W. Wu, Y. Jiang and B. Hu: Biosens. Bioelectron. Vol. 60 (2014) p.271.

Google Scholar

[9] M. Falk, V. Andoralov, Z. Blum, J. Sotres, D.B. Suyatin, T. Ruzgas, T. Arnebrant and S. Shleev: Biosens. Bioelectron. Vol. 37 (2012), p.38.

DOI: 10.1016/j.bios.2012.04.030

Google Scholar

[10] S. Krishnan and F.A. Armstrong: Chem. Sci. Vol. 3 (2012), p.1015.

Google Scholar

[11] J.M. Nelson and E.G. Griffin: J. Am. Chem. Soc. Vol. 38 (1916), p.1109.

Google Scholar

[12] T. Ghous: Jn chem. Soc. Pak. Vol. 23 (2001), p.4.

Google Scholar

[13] G. Fernández-Lorente, J.M. Palomo, C. Mateo, R. Munilla, C. Ortiz, Z. Cabrera, J.M. Guisán and R. Fernandez-Lafuente: Biomacromolecules Vol. 7 (2006), P. 2610.

DOI: 10.1021/bm060408+

Google Scholar

[14] V. Miranda, A. Illanes and L. Wilson: N. Biotechnol. Vol. 25S (2009), p. S113.

Google Scholar

[15] H.K. Song and S.W. Suh: J. Mol. Biol. Vol. 275 (1998), p.347.

Google Scholar

[16] S. Nisha, S. Arun Karthick and N. Gobi: Che. Sci. Rev. Lett. Vol. 1 (2012), p.148.

Google Scholar

[17] C. Qin, M.X. Xie and Y. Liu: Biomacromolecules Vol. 8 (2007), p.2182.

Google Scholar

[18] S. Ghosh: Colloids Surf. B Biointerfaces Vol. 66 (2008), p.178.

Google Scholar

[19] J.T. Yang, C.S. Wu and H.M. Martinez: Methods Enzymol. Vol. 130 (1986), p.208.

Google Scholar

[20] Norma J. Greenfield and Gerald D. Fasman: Biochem. J. Vol. 8 (1969), p.4108.

Google Scholar

[21] I. Staprans and S. Watanabe: J. Biol. Chem. Vol. 245 (1970), p.5962.

Google Scholar