Effects of Different Water Managements on Yield and Cadmium Accumulation in Rice

Article Preview

Abstract:

Water management affects the bioavailability of cadmium (Cd) in the soil and hence their accumulation in rice and grain yields. A pot experiment was carried out to investigate the effects of different water managements (flooding, intermittent irrigation and aerobic) on rice yield and cadmium accumulation in rice plants growing on cadmium contaminated soil. The results showed that compared to the flooding and aerobic treatment, the intermittent irrigation increased grain yield by 7.55-29.58%, which contributed to the increase of seed setting rate and panicle number. Compared with the intermittent irrigation, aerobic treatment significantly increased Cd contents in roots, straw and grains, while flooding reduced the Cd contents in rice. Compared with flooding, both aerobic and intermittent irrigation enhanced Cd distribution in the root and reduced it in the straw and grain. With increasing irrigation from aerobic to flooded conditions, the soil available Cd concentrations decreased significantly. The patterns of soil pH change were just opposite to those of soil available Cd. Thus, intermittent irrigation could increase rice yield and also reduce Cd in the grain.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

248-252

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Satarug, J.R. Baker, S. Urbenjapol, M. Haswell-Elkins, P.E.B. Reilly and D.J. Williams: Toxicol letters Vol. 137 (2003), p.65.

DOI: 10.1016/s0378-4274(02)00381-8

Google Scholar

[2] N. Verbruggen, C. Hermans and H. Schat: Current Opinion in Plant Biol, Vol. 12 (2009), p.364.

Google Scholar

[3] C.F. Wu and L.M. Zhang: Environ. Earth Sci. Vol. 60(2010), p.45.

Google Scholar

[4] H. Yu, J. Wang, W. Fang, J. Yuan and Z. Yang: Sci. Total Environ. Vol. 370 (2000), p.302.

Google Scholar

[5] J. Liu, Q. Zhu, Z. Zhang, J. Xu, J. Yang and M.H. Wong: J. Sci. Food Agric. Vol. 85 (2005), p.147.

Google Scholar

[6] T. Arao, A. Kawasaki, K. Baba, S. Mori and S. Matsumoto: Environ. Sci. Technol. Vol. 43 (2009), p.9361.

Google Scholar

[7] P.J. Hu, J. X Huang, Y. N Ouyang, L.H. Wu, J. Song, S.F. Wang, Z. Li, C.L. Han, L.Q. Zhou, Y. J Huang, Y.M. Luo and P. Christie: Environ. Geochem. Health Vol. 35 (2013), p.767.

DOI: 10.1007/s10653-013-9533-z

Google Scholar

[8] L. Bhushan, J.K. Ladha, R.K. Gupta, S. Singh, A.T. Padre and Y.S. Saharawat: Agron. J. Vol. 99 (2007). p.1288.

Google Scholar

[9] L.N. Zhang, L.G. Zong, S.J. Fu and Z.G. Shen: J. Saf. Environ. Vol. 6 (2006). p.49.

Google Scholar

[10] J.Y. He, Y.F. Ren, F.J. Wang, X.B. Pan, C. Zhu, D.A. Jiang: Arch. Environ. Contam. Toxicol. Vol. 57 (2009), p.299.

Google Scholar

[11] J.Z. Xu, S.Z. Peng, Z.F. Qiao, S.H. Yang and X.L. Gao: Paddy Water Environ. Vol. 12 (2014). p.213.

Google Scholar

[12] G. Du Laing, J. Rinklebeb, B. Vandecasteelec, E. Meersa and F.M.G. Tack: Sci. Total Environ. Vol. 407 (2009), p.3972.

Google Scholar

[13] J.C. Yang, D.F. Huang, H. Duan, G.L. Tan and J.H. Zhang: J. Sci. Food Agric. Vol. 89 (2009). p.1728.

Google Scholar

[14] G.C. Chen, Z.K. Liu, J.F. Zhang and G. Owens: Ecological Engineering Vol. 44 (2012), p.285.

Google Scholar

[15] L.N. Sun, S. Chen, L. Chao and T.H. Sun: Bull. Environ. Contam. Toxicol. Vol. 79 (2007), p.514.

Google Scholar