[1]
Haralick R M Statistical and Structural Approaches to Texture[J] In Proceeding of IEEE, 1975, 67(5): 786~804.
Google Scholar
[2]
Haim Permuter, Joseph Francos and Ian Jermyn. A study of Gaussian mixture models of color and texture features for image classification and segmentation[J]. Pattern Recognition, 2006, 39(14): 695-706.
DOI: 10.1016/j.patcog.2005.10.028
Google Scholar
[3]
Shutao Li, James T. Kwok, Hailong Zhu and Yaonan Wang. Texture classification using the support vector machines[J]. Pattern Recognition, 2003, 36(12): 2883-2893.
DOI: 10.1016/s0031-3203(03)00219-x
Google Scholar
[4]
Liu X, Wang D. Texture classiifcation using spectral histograms [J]. IEEE Transactions on Image Processing, 2003, 12( 6) : 661- 670.
DOI: 10.1109/tip.2003.812327
Google Scholar
[5]
Arivazhagan S, Ganesan L, Subash K T G. Texture classification using curvelet statistical and co- occurrence features[J]. IEEE Pattern Recognition, 2006( 2) : 938- 941.
DOI: 10.1109/icpr.2006.1110
Google Scholar
[6]
Robert MH Shanmugam K . Textural features for image classification [J] IEEE. Transaction on Systems Man and Cybernetics, 1973, SMC-3(6): 610~621.
DOI: 10.1109/tsmc.1973.4309314
Google Scholar
[7]
WangL, HeDC. Texture Classification Using Texture Spectrum [J]. PatternRecognition, 1990, (23): 905-910.
Google Scholar
[8]
SUN Hua-yan, NI Guo-qiang. Target detection method in natural texture background. [J], Opto-Electronic Engineering, 2005, 32(11): 1-4.
Google Scholar
[9]
Woods J W. Two-dimentional discrete markovian fields[J]. IEEE Transactions on Information Theory, 1972 , 18 : 232~240.
DOI: 10.1109/tit.1972.1054786
Google Scholar
[10]
Yang J., Yang J.Y., Zhang D., Lu J. F. Feature fusion Parallel strategy vs. serial strategy[J]. Pattern Recognition, 2003, 36(6): 1369~1381.
DOI: 10.1016/s0031-3203(02)00262-5
Google Scholar
[11]
P.J.M. Van Laarhoven, E.H.L. Aarts, Simulated Annealing[J]. Theory and applications, D. Redidel, (1987).
Google Scholar