[1]
O. Etiler, B. Toklu, M. Atak, and J. Wilson., A genetic algorithm for flow shop scheduling prob- lems, The Journal of the Operational Research Society, 55 (2004), p.830--835.
DOI: 10.1057/palgrave.jors.2601766
Google Scholar
[2]
Michel Gendreau and Jean-Yves Potvin, Handbook of Metaheuristics, Springer Publishing Com- pany, Incorporated, 2nd ed., (2010).
Google Scholar
[3]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), p.671--680.
DOI: 10.1126/science.220.4598.671
Google Scholar
[4]
Bo Liu, Ling Wang, and Yi-Hui Jin, An effective pso-based memetic algorithm for flow shop scheduling, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37 (2007), p.18 --27.
DOI: 10.1109/tsmcb.2006.883272
Google Scholar
[5]
C. Low, J. Yeh, and K. Huang., A robust simulated annealing heuristic for flow shop scheduling problem, International Journal of Advanced Manufacturing Technology, 23 (2004), p.762--767.
DOI: 10.1007/s00170-003-1687-x
Google Scholar
[6]
M. Nawaz, E Emory Enscore Jr, and I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem, OMEGA, 11 (1983), p.91--95.
DOI: 10.1016/0305-0483(83)90088-9
Google Scholar
[7]
C. Rajendran and H. Ziegler, Ant-colony algorithms for permutation flowshop scheduling to min- imize makespan/total flowtime of jobs, European Journal of Operational Research, 155 (2004), p.426--438.
DOI: 10.1016/s0377-2217(02)00908-6
Google Scholar
[8]
K. Rameshkumar, R. Suresh, and K. Mohanasundaram, Discrete particle swarm optimization (dpso) algorithm for permutation flowshop scheduling to minimize makespan, in Advances in Natural Computation, vol. 3612 of Lecture Notes in Computer Science, Springer Berlin / Hei- delberg, 2005, p.572.
DOI: 10.1007/11539902_70
Google Scholar
[9]
Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi, GSA: A gravitational search algorithm, Information Sciences, 179 (2009), p.2232 -- 2248.
DOI: 10.1016/j.ins.2009.03.004
Google Scholar
[10]
E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational Re- search, 64 (1993), p.278--285.
DOI: 10.1016/0377-2217(93)90182-m
Google Scholar
[11]
M. Fatih Tasgetiren, Yun-Chia Liang, Mehmet Sevkli, and Gunes Gencyilmaz, A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flow- shop sequencing problem, European Journal of Operational Research, 177 (2007).
DOI: 10.1016/j.ejor.2005.12.024
Google Scholar
[12]
J. P. Watson, L. Barbulescu, L. D. Whitley, and A. E. Howe, Contrasting structured and ran- dom permutation flow-shop scheduling problems: Search-space topology and algorithm perfor- mance, ORSA Journal on Computing, 14 (2002), p.98--123.
DOI: 10.1287/ijoc.14.2.98.120
Google Scholar
[13]
Ko wei Huang, Chu sing Yang, and Chun wei Tsai, A two-phase hybrid particle swarm optimiza- tion algorithm for solving permutation flow-shop scheduling problem, International Journal of Computer Applications, 48 (2012), p.11--18.
DOI: 10.5120/7311-9883
Google Scholar
[14]
Zhanpeng Xie, Chaoyong Zhang, Xinyu Shao, Wenwen Lin, and Haiping Zhu, An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem, Advances in Engineering Software, 77 (2014), p.35 -- 47.
DOI: 10.1016/j.advengsoft.2014.07.006
Google Scholar