A Novel Efficient Mining Association Rules Algorithm for Distributed Databases

Article Preview

Abstract:

Due to the popularity of knowledge discovery and data mining, in practice as well as among academic and corporate professionals, association rule mining is receiving increasing attention. The technology of data mining is applied in analyzing data in databases. This paper puts forward a new method which is suit to design the distributed databases.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 108-111)

Pages:

50-56

Citation:

Online since:

May 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules Between Sets of Items in Large Databases", SIGMOD Conference 1993: 207-216.

DOI: 10.1145/170036.170072

Google Scholar

[2] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for association rule mining - A general survey and comparison. SIGKDD Explorations, 2(2): 1-58, (2000).

DOI: 10.1145/360402.360421

Google Scholar

[3] Edward R. Omiecinski. Alternative interest measures for mining associations in databases. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(1): 57-69.

DOI: 10.1109/tkde.2003.1161582

Google Scholar

[4] C. C. Aggarwal and P. S. Yu. A new framework for itemset generation. In PODS 98, Symposium on Principles of Database Systems, pages 18-24, Seattle, WA, USA, (1998).

DOI: 10.1145/275487.275490

Google Scholar

[5] Piatetsky-Shapiro, G., Discovery, analysis, and presentation of strong rules. Knowledge Discovery in Databases, 1991: pp.229-248.

Google Scholar

[6] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right objective measure for association analysis. Information Systems, 29(4): 293-313, (2004).

DOI: 10.1016/s0306-4379(03)00072-3

Google Scholar

[7] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without candidate generation. Data Mining and Knowledge Discovery 8: 53-87, (2004).

DOI: 10.1023/b:dami.0000005258.31418.83

Google Scholar

[8] Bayardo, R.J. and Agrawal, R. and Gunopulos, D. Constraint-based rule mining in large, dense databases. Data Mining and Knowledge Discovery , 2000, 4(2): 217-240.

DOI: 10.1109/icde.1999.754924

Google Scholar

[9] M. J. Zaki. (2001). SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning Journal, 42, 31-60.

Google Scholar

[10] Joachims T. Text categorization with support vector machines: learning with many relevant features[C]/ The 10 th European Conference on Machine Learning. New York: Springer, 2007: 137-142.

DOI: 10.1007/bfb0026683

Google Scholar

[11] YU Hong-mei, YAO Ping-jing. Combined genetic algorithm/ simulated annealing algorithm for large-scale system energy integration [J] . Computers and Chemical Engineering, Elsevier Science Ltd , 2005, 8(24): 2023-(2035).

DOI: 10.1016/s0098-1354(00)00601-3

Google Scholar

[12] Yang J, Honavar V. Feature Subset Selection using a Genetic Algorithm[J]. IEEE Transaction on Intelligent Systems. 2003, 18(2): 44-49.

DOI: 10.1109/5254.671091

Google Scholar

[13] LEMPEL R,MORAN S:Stochastic approach for link structure analysis and the TKC effect.

Google Scholar

[14] KOSALA R, BLOCKEEL H. Web mining research: a survey [J]. SIGKDD Explorations, 2000, 2(1): 1-15.

DOI: 10.1145/360402.360406

Google Scholar

[15] Kleinberg J. Authoritative sources in a hyperlinked environment [J]. Journal of the ACM, 1998, 46(5): 604-632.

DOI: 10.1145/324133.324140

Google Scholar

[16] Lawrence S. andGiles C.L. 1999b Text and image meta-search on the web. International Conference on Parallel and Distributed Processing Techniques and Application, (1999).

Google Scholar

[17] Menczer F, Belew R.K., Willuhn W. Artificial life applied to adaptive information agents. Spring Symposium on Information Gathering from distributed, Heterogeneous Databases, AAIPress, (1995).

Google Scholar

[18] MoukasA, Amalthea. Iinformation discovery and filtering using a multiagent-evolving ecosystem. Applied Artificial Intelligence, 11(5): 437-457, (1997).

DOI: 10.1080/088395197118127

Google Scholar

[19] Whitley D. The Genitor algorithm and selective pressure: why rank-based allocation of reproductive trials is best. Proceedings of the third International Conference on Genetic Algorithms, 1989, J.D. Schaffer (Ed), Morgan Kaufmann, pp.116-124.

Google Scholar

[20] V. Loia and P. Luongo, An evolutionary approach to automatic web page categorization and updating, in Web Intelligence: Research and Development, . Zhong,Y. Yab,J. Liu, andS. Oshuga, Eds, Singapore: Springer-Verlag, 2001, vol. LNCS 2198, pp.292-302.

DOI: 10.1007/3-540-45490-x_35

Google Scholar

[21] M. Kaya, R. Alhajj, F. Polat, A. Arslan, Efficient automated mining of fuzzy association rules, in: Proc. Internat. Conf. Database and Expert Systems with Applications, (2002).

DOI: 10.1007/3-540-46146-9_14

Google Scholar

[22] S. Sakurai, Y. Ichimura, A. Suyama, R. Orihara, Inductive learning ofa knowledge dictionary for a text mining system, in: L. Monostori, J. Vancza, M. Ali (Eds. ), Proc. 14th Internat. Conf. Industrial and Engineering Applications ofArti8cial Intelligence and Expert Systems (IEA/AIE 2001), Lecture Notes in Arti8cial Intelligence, vol. 2070, Springer, Berlin, 2001, pp.247-252.

DOI: 10.1007/3-540-45517-5_28

Google Scholar

[23] J. Wieselthier, G.D. Nguyen, A. Ephremides, On the construction of energy-efficient broadcast and multicast trees in wireless networks, in Proceedings of the IEEE Infocom, Tel Aviv, Israel, 2000, pp.585-594.

DOI: 10.1109/infcom.2000.832232

Google Scholar

[24] M.X. Cheng et al., Topology control of ad hoc wireless networks for energy efficiency, IEEE Transactions on Computers 2004, 53 (12): 23-34.

Google Scholar

[25] M. Cardei and D. Z. Du, Improving wireless sensor network lifetime through power aware organization, Wireless Networks, 2005, pp.333-340.

DOI: 10.1007/s11276-005-6615-6

Google Scholar

[26] Metropolis N, Rosenbluth A.W. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 2003,1087-1092.

Google Scholar

[27] M. Boughanem, C. Chrisment, J. Mothe, C. S. Dupuy, and L. Tamine. Connectionist and genetic approaches for information retrieval[C], in Soft Computing in Information Retrieval: Techniques and Applications Heidelberg, Germany: Physica-Verlag 2000, 12(50): 102-121.

DOI: 10.1007/978-3-7908-1849-9_8

Google Scholar

[28] Yang. Y, Honavar, V. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 1998, 13(2): 44-49.

DOI: 10.1109/5254.671091

Google Scholar

[29] Punch, W.F., Goodman, E. D Further research on feature selection and classification using genetic algorithm. Proceedings of the Fifth International Conference on Genetic Algorithm, San Mateo, CA, Morgan Kaufmann, 1993, pp: 557-564.

Google Scholar

[30] Adriana, P., Veronica L.P. A Genetic Algorithm for Text Classification Rule Induction [J]. Berlin, Heidelberg: Springer-Verlag, LNAI 5212, 2008: 188-203.

Google Scholar

[31] Kudo, M. Sklansky, K., Comparison of algorithms that select feature for pattern classifier, Pattern Recognition, 2000, 33(2): 25-41.

DOI: 10.1016/s0031-3203(99)00041-2

Google Scholar