Preparation and Photocatalytic Property of Cubic WO3

Article Preview

Abstract:

The cubic WO3 powder was prepared by sol-gel method with WCl6 as the soure of tungsten and P123 as the structure-directing agent. The crystalline phase and microstructure of the powder were characterized through TG-DSC, XRD and SEM techniques, respectively. It was found the powder annealed at 250°C for 4h mainly was cubic WO3 with a little monoclinic phase. The SEM micrographs revealed the powder has a petal shape with about 200 nm mean particle diameter. The photocatalytic activity of the powder was evaluated by methyl orange as mode compound to photocatalytic degradation under UV light irradiation. The results show the cubic WO3 powder has much higher photocatalytic activity than the monoclinic phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

304-307

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24 (2012) 229-251.

DOI: 10.1002/adma.201102752

Google Scholar

[2] H. Zhang , G. Chen , D. W. Bahnemann , J. Mater. Chem. 2009 , 19 , 5089.

Google Scholar

[3] A. Watcharenwong , W. Chanmanee , N. R. de Tacconi ,C. R. Chenthamarakshan , P. Kajitvichyanukul, K. Rajeshwar , J. Electroanal. Chem. 2008 , 612 , 112.

DOI: 10.1016/j.jelechem.2007.09.030

Google Scholar

[4] M. Hepel , J. Luo , Electrochim. Acta. 2001 , 47 , 729.

Google Scholar

[5] M. Qamar , M. A. Gondal , K. Hayat , Z. H. Yamani , K. Al-Hooshani ,J. Hazard. Mater. 2009 , 170 , 584.

Google Scholar

[6] M. A. Gondal , A. Bagabas , A. Dastageer , A. Khalil , J. Mol. Catal. A-Chem. 2010 , 323 , 78.

Google Scholar

[7] M. A. Gondal , M. A. Dastageer , A. Khalil , Catal. Commun. 2009 , 11 , 214.

Google Scholar

[8] D. Monllor-Satoca , L. Borja , A. Rodes , R. Gómez , P. Salvador , ChemPhysChem 2006 , 7 , 2540.

DOI: 10.1002/cphc.200600379

Google Scholar

[9] K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishan-Ayer, J. Photochem. Photobiol. 2008, C 9, 171.

DOI: 10.1016/j.jphotochemrev.2008.09.001

Google Scholar

[10] M. Qamar, M.A. Gondal, Z.H. Yamani, Catal. Commun. 2009, 10, (1980).

Google Scholar

[11] M.A. Rauf, S.S. Ashraf, J. Hazard. Mater. 2009, 166, 6.

Google Scholar

[12] S.J. Hong, H. Jun, P.H. Borse, J.S. Lee, Int. J. Hydrogen Energy. 2009, 34, 3234.

Google Scholar

[13] M. Qamar, M.A. Gondal, Z.H. Yamani, Catal. Commun. 2010, 11, 768.

Google Scholar

[14] O. Yamaguchi, D. Tomihisa, H. Kawabata, K. Shimizu, J. Am. Chem. Soc. 1987, 70 , C94.

Google Scholar

[15] C. Bala´zsi, M.F. Jahnke, I. Kotsis, L. Petra´s, J. Pfeifer, Solid State Ionics. 2001, 141-142, 411.

Google Scholar

[16] T. Nishide, F. Mizukami, Thin Solid Films. 1995, 259, 212.

Google Scholar