[1]
A.H. Cottrell, Dislocations and plastic flow in crystals. Clarendon Press, (1965).
Google Scholar
[2]
M.E. Kassner, Fundamentals of Creep in Metals and Alloys, Elsevier Inc., San Diego, (2004).
Google Scholar
[3]
R. Lagneborg, Dislocation mechanisms in creep. Intern. Metals. Rev. 17 (1972) 130-146.
Google Scholar
[4]
Z. Boumerzoug, S. Gareh and A. Beribeche, Effect of Prior-Heat Treatments on the Creep Behavior of an Industrial Drawn Copper, World Journal of Condensed Matter Physics, 2(4) (2012) 241-245.
DOI: 10.4236/wjcmp.2012.24041
Google Scholar
[5]
A. Beribeche, Z. Boumerzoug, V. Ji, Heat Treatments Effect on the Mechanical Properties of Industrial Drawn Copper Wires, Advanced Materials Research, 811 (2013) 9-13.
DOI: 10.4028/www.scientific.net/amr.811.9
Google Scholar
[6]
L.E. Popov, S.N. Kolupaeva, N.A. Vihor, S.I. Puspesheva, Dislocation dynamics of elementary crystallographic shear. Computational Materials Science, 19 (1-4) (2000) 267-274.
DOI: 10.1016/s0927-0256(00)00163-4
Google Scholar
[7]
S.I. Puspesheva, S.N. Kolupaeva, L.E. Popov, The time characteristics of elementary crystallographic slip, Phys. Mesomech., 3(3) (2000) 59-65.
Google Scholar
[8]
S.N. Kolupaeva, T.A. Kovalevskaya, O.I. Daneyko, M.E. Semenov, N.A. Kulaeva, Modeling of temperature and rate dependence of the flow stress and evolution of a deformation defect medium in dispersion-hardened materials, Bulletin of the Russian Academy of Sciences: Physics 74 (11) (2010).
DOI: 10.3103/s1062873810110080
Google Scholar
[9]
V.S. Zolotorevskii, Mechanical Properties of Metals. MISiS, Moscow, 1998, [in Russian].
Google Scholar