[1]
P. Aengchuan, B. Phruksaphanrat, Inventory system design by fuzzy logic control: a case study, Adv. Mater. Res. 811 (2013) 619-624.
DOI: 10.4028/www.scientific.net/amr.811.619
Google Scholar
[2]
M. Prosperi, G. Ulivi, Evolutionary fuzzy modelling for drug resistant HIV-1 treatment optimization, Stud. Comput. Intell. (SCI) 82 (2008) 251-287.
DOI: 10.1007/978-3-540-75396-4_9
Google Scholar
[3]
S.H. Ling, H.T. Nguyen, Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model, Artif. Intell. Med. 55 (2012) 177–184.
DOI: 10.1016/j.artmed.2012.04.003
Google Scholar
[4]
R. Langer, D. A. Tirrell, Designing materials for biology and medicine, Nature 428 (2004) 487-492.
DOI: 10.1038/nature02388
Google Scholar
[5]
J.A. Cruz, D.S. Wishart, Applications of machine learning in cancer prediction and prognosis, Cancer Informatics 2 (2006) 59-78.
Google Scholar
[6]
J. Kennedy, R. Ebenhart, Particle swarm optimization, in: Proc. IEEE IJCNN (1995) 1942-(1948).
Google Scholar
[7]
M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by colony of cooperating agents, IEEE T. Syst. Man Cy. B 26 (1996) 29-41.
DOI: 10.1109/3477.484436
Google Scholar
[8]
K. Socha, M. Dorigo Ant colony optimization for continuous domains, Eur. J. Oper. Res. 185 (2008) 1155-1173.
DOI: 10.1016/j.ejor.2006.06.046
Google Scholar
[9]
I.A. Khodashinsky, P.A. Dudin, Parametric fuzzy model identification based on a hybrid ant colony algorithm, Optoelectronics, Instrumentation and Data Processing 44 (2008) 402-411.
DOI: 10.3103/s8756699008050038
Google Scholar
[10]
I.A. Khodashinskii, P.A. Dudin, Identification of fuzzy systems using a continuous ant colony algorithm, Optoelectron. Instr. and Data Proc. 48 (2012) 54-61.
DOI: 10.3103/s8756699012010086
Google Scholar
[11]
I.A. Hodashinsky, I.V. Gorbunov, Algorithms of the tradeoff between accuracy and complexity in the design of fuzzy approximators, Optoelectron. Instr. and Data Proc. 49 (2013) 569-577.
DOI: 10.3103/s875669901306006x
Google Scholar