Designing Fuzzy Systems to Predict Efficiency of the Non-Pharmacological Treatment

Article Preview

Abstract:

A method for choosing rehabilitation programs on the basis of fuzzy classifiers and approximators is proposed. Fuzzy systems are identified using swarm intelligence methods and methods based on derivatives. The results of the system operation on the real data are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-470

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Aengchuan, B. Phruksaphanrat, Inventory system design by fuzzy logic control: a case study, Adv. Mater. Res. 811 (2013) 619-624.

DOI: 10.4028/www.scientific.net/amr.811.619

Google Scholar

[2] M. Prosperi, G. Ulivi, Evolutionary fuzzy modelling for drug resistant HIV-1 treatment optimization, Stud. Comput. Intell. (SCI) 82 (2008) 251-287.

DOI: 10.1007/978-3-540-75396-4_9

Google Scholar

[3] S.H. Ling, H.T. Nguyen, Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model, Artif. Intell. Med. 55 (2012) 177–184.

DOI: 10.1016/j.artmed.2012.04.003

Google Scholar

[4] R. Langer, D. A. Tirrell, Designing materials for biology and medicine, Nature 428 (2004) 487-492.

DOI: 10.1038/nature02388

Google Scholar

[5] J.A. Cruz, D.S. Wishart, Applications of machine learning in cancer prediction and prognosis, Cancer Informatics 2 (2006) 59-78.

Google Scholar

[6] J. Kennedy, R. Ebenhart, Particle swarm optimization, in: Proc. IEEE IJCNN (1995) 1942-(1948).

Google Scholar

[7] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by colony of cooperating agents, IEEE T. Syst. Man Cy. B 26 (1996) 29-41.

DOI: 10.1109/3477.484436

Google Scholar

[8] K. Socha, M. Dorigo Ant colony optimization for continuous domains, Eur. J. Oper. Res. 185 (2008) 1155-1173.

DOI: 10.1016/j.ejor.2006.06.046

Google Scholar

[9] I.A. Khodashinsky, P.A. Dudin, Parametric fuzzy model identification based on a hybrid ant colony algorithm, Optoelectronics, Instrumentation and Data Processing 44 (2008) 402-411.

DOI: 10.3103/s8756699008050038

Google Scholar

[10] I.A. Khodashinskii, P.A. Dudin, Identification of fuzzy systems using a continuous ant colony algorithm, Optoelectron. Instr. and Data Proc. 48 (2012) 54-61.

DOI: 10.3103/s8756699012010086

Google Scholar

[11] I.A. Hodashinsky, I.V. Gorbunov, Algorithms of the tradeoff between accuracy and complexity in the design of fuzzy approximators, Optoelectron. Instr. and Data Proc. 49 (2013) 569-577.

DOI: 10.3103/s875669901306006x

Google Scholar