Synthesis of Cobalt Nanopowder Using Surfactants of Different Nature

Article Preview

Abstract:

The synthesis of controlled dispersity nanopowders is a vital nanotechnology task. This paper describes how the type of surfactants used during the hydroxide precursor Co (OH)2 precipitation influences the dispersity of cobalt nanopowder obtained by the process of hydroxide reduction. It has been determined that the usage of surfactants may both increase and decrease the nanopowders dispersity: when using 0.1 wt.% “cetylpyridinium chloride – no surfactants – EDTA sodium salt – polyethylene glycol – sodium lauryl sulfate” surfactant solutions, during the precipitation process the specific surface of the obtained metallic nanopowder was equal to “3.7 – 4.5 – 5.0 – 6.0 – 9.5 m2/g”, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.N. Satyanarayana, T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials, Prog. Mater. Sci. 52 (2007) 699-913.

DOI: 10.1016/j.pmatsci.2006.08.001

Google Scholar

[2] Y. Yang, C.L. Xu, L. Qiao, L. Xing-Hua, L. Fa-Shen, Microwave magnetic properties and natural resonance of Co nanoparticles, Chinese Phys. Let. 27 (2010) 501-507.

DOI: 10.1088/0256-307x/27/5/057501

Google Scholar

[3] T.N. Narayanan, M.M. Shaijumon, P.M. Ajayan, M.R. Anantharaman, Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth, J. Phys. Chem. 112 (2008) 14281-14285.

DOI: 10.1021/jp8035007

Google Scholar

[4] Zh. Dong, K. Ma, J. He, J. Wang, R. Li, J. Ma, Decorating carbon nanotubes with cobalt nanoparticles, Mat. Let. 62 (2008) 4059-4061.

DOI: 10.1016/j.matlet.2008.06.017

Google Scholar

[5] S. Spriano, Q. Chen, L. Settineri, S. Bugliosi, Low content and free cobalt matrixes for diamond tools, Wear. 259 (2005) 1190-1196.

DOI: 10.1016/j.wear.2005.02.076

Google Scholar

[6] S.W. Webb, Diamond retention in sintered cobalt bonds for stone cutting and drilling, Diamond and Rel. Mat. 8 (1999) 2043-(2052).

DOI: 10.1016/s0925-9635(99)00167-3

Google Scholar

[7] X. Xi, Preparation and characterization of ultrafine cobalt powders and supported cobalt catalysts by freeze-drying, Powder Technol. 191 (2009) 107-110.

DOI: 10.1016/j.powtec.2008.09.017

Google Scholar

[8] S. Gurmen, S. Stopic, B. Friedrich, Synthesis of nanosized spherical cobalt powder by ultrasonic spray pyrolysis, Mat. Res. Bul. 41 (2006) 1882-1890.

DOI: 10.1016/j.materresbull.2006.03.006

Google Scholar

[9] M. Huuppola, N. Doan, K. Kontturi, C. Johans, Evolution of size distribution in pressure drop induced decomposition synthesis of cobalt nanoparticles, J. Coll. Int. Science. 344 (2010) 292-297.

DOI: 10.1016/j.jcis.2009.12.054

Google Scholar

[10] D.V. Kuznetsov, D.V. Lysov, V.V. Levina, D.I. Ryzhonkov, S.D. Kaloshkin, Structural Special Features in Nanodispersed Ni–SiO2 Composite Materials Produced by Method of Chemical Dispersion, Inorg. Mat.: Appl. Res. 1 (2010) 57-63.

DOI: 10.1134/s2075113310010090

Google Scholar