[1]
Y.T. Sul, C.B. Johanson, Y. Jeong, and T. Albrektsson, The Electrochemical Oxide Growth Behaviour on Titanium in Acid and Alkaline Electrolytes, Med. Eng. Phys. 23 (2001) 329-346.
DOI: 10.1016/s1350-4533(01)00050-9
Google Scholar
[2]
Y.T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg , Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition, Biomat., 23 (2002) 491–501.
DOI: 10.1016/s0142-9612(01)00131-4
Google Scholar
[3]
Y.T. Sul, C.B. Johanson, S. Petronis, Y. Kang, D.G. Jeon, T. Albrektsson, Bone Reactions to Oxidized Titanium Implants with Electrochemical Anion Sulphuric Acid and Phosphoric Acid Incorporation, Clin Implant Dent Relat Res, 4 (2002) 78–87.
DOI: 10.1111/j.1708-8208.2002.tb00156.x
Google Scholar
[4]
A. Mills, S. Le Hunte, An Overview of Semiconductor Photocatalysis, J. Photochem. and Photobio. A: Chemistry, 108 (1997) 1-35.
Google Scholar
[5]
H.J. Oh, J.H. Lee, Y. Jeong, Y.J. Kim, and C.S. Chi, Microstructural Characterization of Biomedical Titanium Oxide Film Fabricated by Electrochemical Method, Surf. Coat. Tech, 198 (2004) 247-252.
DOI: 10.1016/j.surfcoat.2004.10.029
Google Scholar
[6]
C. Jaeggi, P. Kern, J. Michler, T. Zehnder, H. Siegenthaler, Anodic Thin Films on Titanium used as Masks for Surface Micropatterning of Biomedical Devices, Surf. Coat. Tech, 200 (2005) 1913-1919.
DOI: 10.1016/j.surfcoat.2005.08.021
Google Scholar
[7]
Y. Jeong, The Structural Chemistry of Anodic Alumina, Thesis, Corrosion and Protection Centre, University of Manchester Institute of Science and Technology UK, 1993.
Google Scholar
[8]
R, Tabrizi. Surface Treatments of Titanium and Its Alloy. Thesis, Corrosion and Protection Centre, University of Manchester Institute of Science and Technology UK, 1989.
Google Scholar
[9]
G. Blondeau, M. Froelicher, M. Froment, A. Hugot-Le-Goff, Structure and Growth of Anodic Oxide Films on Titanium and TA6V Alloy, J. Less-Comm Met, 56 (1977) 215–22.
DOI: 10.1016/0022-5088(77)90043-1
Google Scholar
[10]
M.V. Diamanti, M.P. Pedeferri. Effect of Anodic Oxidation Parameters on the Titanium Oxide Formation, Corr. Sci, 49 (2007) 939-948.
DOI: 10.1016/j.corsci.2006.04.002
Google Scholar
[11]
E. Krasicka-Cydzik, Method of Formation Phosphate Layers on Titanium and its Alloys, PL Patent 367556. (2003).
Google Scholar
[12]
E. Krasicka-Cydzik, Formation of Thin Anodic Layers on Titanium and its Implant Alloys in Phosphoric Acid Solutions, Univ. Zielona Gora Press, 2003.
Google Scholar
[13]
B.C. Yang, M. Uchida, H.M. Kim, X.D. Zhang, T. Kokubo, Preparation of Bioactive Titanium Metal Via Anodic Oxidation Treatment, Biomaterials, 25 (2004) 1003–10.
DOI: 10.1016/s0142-9612(03)00626-4
Google Scholar
[14]
T. Albrektsson et al, Experimental Studies on Oxidized Implants: a Histomorphometrical and Biomechanical Analysis, J. Appl Osseoint. Res, 1 (2000) 21–4.
Google Scholar
[15]
H.Z. Abdullah, C.C. Sorrell, Preparation and Characterisation of TiO2 Thick Films Fabricated by Anodic Oxidation, Materials Science Forum, 561-565 (2007) 2159-2162.
DOI: 10.4028/www.scientific.net/msf.561-565.2159
Google Scholar