[1]
Murakami, K., Mitooka, Y., Hino, M., Iogawa, H., Ono, H., Katayama, S., 2006. YAG laser-TIG hybrid welding of 800 MPa-class high tensile strength steel. JOURNAL-JAPAN INSTITUTE OF METALS 70, 134.
DOI: 10.2320/jinstmet.70.134
Google Scholar
[2]
Yoon, S.H., Hwang, J.R., Na, S.J., 2007. A study on the plasma-augmented laser welding for small-diameter STS tubes. The International Journal of Advanced Manufacturing Technology 32, 1134-1143.
DOI: 10.1007/s00170-006-0436-3
Google Scholar
[3]
Kim, C., Choi, W., Kim, J., Rhee, S., 2008. Relationship between the weldability and the process parameters for laser-TIG hybrid welding of galvanized steel sheets. Materials transactions 49, 179-186.
DOI: 10.2320/matertrans.mer2007159
Google Scholar
[4]
Gao, M., Zeng, X., Hu, Q., Yan, J., 2009. Laser-TIG hybrid welding of ultra-fine grained steel. Journal of materials processing technology 209, 785-791.
DOI: 10.1016/j.jmatprotec.2008.02.062
Google Scholar
[5]
Liming, L., Jifeng, W., Gang, S., 2004. Hybrid laser/TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy. Materials science and engineering: A 381, 129-133.
DOI: 10.1016/j.msea.2004.04.044
Google Scholar
[6]
Liu, L., Liu, X., Liu, S., 2006. Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer. Scripta materialia 55, 383-386.
DOI: 10.1016/j.scriptamat.2006.04.025
Google Scholar
[7]
Liu, L.M., Hao, X.F., Du, X., 2008. Microstructure characteristics and mechanical properties of laser/TIG hybrid welding joint of TA15 titanium alloy. Materials Research Innovations 12, 114-118.
DOI: 10.1179/143307508x333703
Google Scholar
[8]
Song, G., Liu, L., Chi, M., Wang, J.F., Investigations on laser-TIG hybrid welding of magnesium alloys. 488, 371-376.
DOI: 10.4028/www.scientific.net/msf.488-489.371
Google Scholar
[9]
Chen, Y.B., Lei, Z.L., Li, L.Q., Wu, L., 2006. Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Science and Technology of Welding & Joining 11, 403-411.
DOI: 10.1179/174329306x129535
Google Scholar
[10]
Yanbin, C., Zhenglong, L., Liqun, L., Lin, W., Cheng, X., 2006. Novel hybrid method: pulse CO2 laser-TIG hybrid welding by coordinated control. China welding 15.
DOI: 10.2351/1.5060044
Google Scholar
[11]
Kelly, S.M., Reutzel, E.W., Whitney, E.J., Tressler, J.F., Martukanitz, R.P., 2005. Examination of the process efficiency during hybrid laser-arc welding. Mater. Sci. Technol. 3, 69-76.
Google Scholar
[12]
Yugang, M., Liqun, L., Yanbin, C., Lin, W., 2008. Study on heat efficiency of laser-TIG double-side welding. China welding 17.
Google Scholar
[13]
Fuerschbach, P.W., Eisler, G.R., 2002. Effect of laser spot weld energy and duration on melting and absorption. Science and Technology of Welding & Joining 7, 241-246.
DOI: 10.1179/136217102225004293
Google Scholar
[14]
Shida, T., Terauchi, T., 1996. Measurement of beam energy absorption in CO2 laser welding. Quarterly J. Japan Weld. Soc. 14, 477-482.
DOI: 10.2207/qjjws.14.477
Google Scholar
[15]
Shida, T., Wakasa, T., Taukamoto, A., Horaoka, K., 1999. Measurement of beam energy absorption in CO2 laser welding. Quarterly J. Japan Weld. Soc. 17, 10-17.
DOI: 10.2207/qjjws.17.493
Google Scholar
[16]
Perret, O., Naudy, P., Bizouard, M., Two experimental methods to understand keyhole formation in pulse Nd: YAG laser welding. 778-787.
DOI: 10.1117/12.377091
Google Scholar
[17]
Weston, J.P., 1999. Laser welding of aluminium alloys, University of Cambridge.
Google Scholar
[18]
Jouvard, J.M., Girard, K., Perret, O., 2001. Keyhole formation and power deposition in Nd: YAG laser spot welding. Journal of Physics D: Applied Physics 34, 2894.
DOI: 10.1088/0022-3727/34/18/324
Google Scholar
[19]
Greses, J., Barlow, C.Y., Hilton, P.A., Steen, W.M., 2003a. Effects of Different Gas Environments on CO2 and Nd: YAG Laser Welding Process Efficiencies, SPIE, pp.257-262.
DOI: 10.1117/12.486500
Google Scholar