The Influence of Welding Parameters on Heat Transfer Efficiency of Hybrid Pulsed Nd: YAG/GTAW Welding

Article Preview

Abstract:

In this work, effects of major welding parameters, such as laser power, defocus distance of laser beam, inter-heat sources distance and welding speed, on weld geometry were investigated for pulsed Nd:YAG laser/GTAW hybrid welding of 304 stainless steel. Heat transfer efficiency of pulsed Nd:YAG laser/GTAW hybrid welding process was quantitativly analyzed based on rosenthal equation. Furthermore, melting efficiency was determined from the measured welding seams cross section area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

807-813

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Murakami, K., Mitooka, Y., Hino, M., Iogawa, H., Ono, H., Katayama, S., 2006. YAG laser-TIG hybrid welding of 800 MPa-class high tensile strength steel. JOURNAL-JAPAN INSTITUTE OF METALS 70, 134.

DOI: 10.2320/jinstmet.70.134

Google Scholar

[2] Yoon, S.H., Hwang, J.R., Na, S.J., 2007. A study on the plasma-augmented laser welding for small-diameter STS tubes. The International Journal of Advanced Manufacturing Technology 32, 1134-1143.

DOI: 10.1007/s00170-006-0436-3

Google Scholar

[3] Kim, C., Choi, W., Kim, J., Rhee, S., 2008. Relationship between the weldability and the process parameters for laser-TIG hybrid welding of galvanized steel sheets. Materials transactions 49, 179-186.

DOI: 10.2320/matertrans.mer2007159

Google Scholar

[4] Gao, M., Zeng, X., Hu, Q., Yan, J., 2009. Laser-TIG hybrid welding of ultra-fine grained steel. Journal of materials processing technology 209, 785-791.

DOI: 10.1016/j.jmatprotec.2008.02.062

Google Scholar

[5] Liming, L., Jifeng, W., Gang, S., 2004. Hybrid laser/TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy. Materials science and engineering: A 381, 129-133.

DOI: 10.1016/j.msea.2004.04.044

Google Scholar

[6] Liu, L., Liu, X., Liu, S., 2006. Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer. Scripta materialia 55, 383-386.

DOI: 10.1016/j.scriptamat.2006.04.025

Google Scholar

[7] Liu, L.M., Hao, X.F., Du, X., 2008. Microstructure characteristics and mechanical properties of laser/TIG hybrid welding joint of TA15 titanium alloy. Materials Research Innovations 12, 114-118.

DOI: 10.1179/143307508x333703

Google Scholar

[8] Song, G., Liu, L., Chi, M., Wang, J.F., Investigations on laser-TIG hybrid welding of magnesium alloys. 488, 371-376.

DOI: 10.4028/www.scientific.net/msf.488-489.371

Google Scholar

[9] Chen, Y.B., Lei, Z.L., Li, L.Q., Wu, L., 2006. Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Science and Technology of Welding & Joining 11, 403-411.

DOI: 10.1179/174329306x129535

Google Scholar

[10] Yanbin, C., Zhenglong, L., Liqun, L., Lin, W., Cheng, X., 2006. Novel hybrid method: pulse CO2 laser-TIG hybrid welding by coordinated control. China welding 15.

DOI: 10.2351/1.5060044

Google Scholar

[11] Kelly, S.M., Reutzel, E.W., Whitney, E.J., Tressler, J.F., Martukanitz, R.P., 2005. Examination of the process efficiency during hybrid laser-arc welding. Mater. Sci. Technol. 3, 69-76.

Google Scholar

[12] Yugang, M., Liqun, L., Yanbin, C., Lin, W., 2008. Study on heat efficiency of laser-TIG double-side welding. China welding 17.

Google Scholar

[13] Fuerschbach, P.W., Eisler, G.R., 2002. Effect of laser spot weld energy and duration on melting and absorption. Science and Technology of Welding & Joining 7, 241-246.

DOI: 10.1179/136217102225004293

Google Scholar

[14] Shida, T., Terauchi, T., 1996. Measurement of beam energy absorption in CO2 laser welding. Quarterly J. Japan Weld. Soc. 14, 477-482.

DOI: 10.2207/qjjws.14.477

Google Scholar

[15] Shida, T., Wakasa, T., Taukamoto, A., Horaoka, K., 1999. Measurement of beam energy absorption in CO2 laser welding. Quarterly J. Japan Weld. Soc. 17, 10-17.

DOI: 10.2207/qjjws.17.493

Google Scholar

[16] Perret, O., Naudy, P., Bizouard, M., Two experimental methods to understand keyhole formation in pulse Nd: YAG laser welding. 778-787.

DOI: 10.1117/12.377091

Google Scholar

[17] Weston, J.P., 1999. Laser welding of aluminium alloys, University of Cambridge.

Google Scholar

[18] Jouvard, J.M., Girard, K., Perret, O., 2001. Keyhole formation and power deposition in Nd: YAG laser spot welding. Journal of Physics D: Applied Physics 34, 2894.

DOI: 10.1088/0022-3727/34/18/324

Google Scholar

[19] Greses, J., Barlow, C.Y., Hilton, P.A., Steen, W.M., 2003a. Effects of Different Gas Environments on CO2 and Nd: YAG Laser Welding Process Efficiencies, SPIE, pp.257-262.

DOI: 10.1117/12.486500

Google Scholar