[1]
Hande A, Bridgelall R, Zoghi B. Vibration energy harvesting for disaster asset monitoring using active RFID tags. Proc IEEE, 2010, 98(9): 1620-1628.
DOI: 10.1109/jproc.2010.2050670
Google Scholar
[2]
Romani A, Filippi M, Tartagni M. Micropower design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers. IEEE T Power Electron, 2014, 29(2): 729-739.
DOI: 10.1109/tpel.2013.2257856
Google Scholar
[3]
Wu N, Wang Q, Xie X D. Wind energy harvesting with a piezoelectric harvester. Smart Mater Struct, 2013, 22(9): 095023.
DOI: 10.1088/0964-1726/22/9/095023
Google Scholar
[4]
Yuan T C, Yang J, Song R G and Liu X W. Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater Struct, 2014, 23(12): 125046.
DOI: 10.1088/0964-1726/23/12/125046
Google Scholar
[5]
Gao X, Shih W H, Shih W Y. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE T Ind Electron, 2013, 60(3): 1116-1118.
DOI: 10.1109/tie.2012.2187413
Google Scholar
[6]
Li P, Jin F, Yang J S. A piezoelectric energy harvester with increased bandwidth based on beam flexural vibrations in perpendicular directions. IEEE Trans Ultrason Ferroelectr Freq Control, 2013, 60(10): 2214-2218.
DOI: 10.1109/tuffc.2013.2813
Google Scholar
[7]
Liang J R, Chung S H, Liao W H. Dielectric loss against piezoelectric power harvesting. Smart Mater Struct, 2014, 23: 092001.
DOI: 10.1088/0964-1726/23/9/092001
Google Scholar
[8]
Tiwari R, Buch N, Garcia E. Energy balance for peak detection method in piezoelectric energy harvester. J Intell Mater Syst Struct, 2014, 25(8): 1024-1035.
DOI: 10.1177/1045389x13502871
Google Scholar
[9]
Guan M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater Struct, 2007, 16: 498-505.
DOI: 10.1088/0964-1726/16/2/031
Google Scholar
[10]
Guan M J, Liao W H. Characteristics of energy storage devices in piezoelectric energy harvesting systems. J Intell Mater Syst Struct, 2008, 19(6): 671-680.
DOI: 10.1177/1045389x07078969
Google Scholar
[11]
Castagnetti D. A wideband fractal-inspired piezoelectric energy converter: design, simulation and experimental characterization. Smart Mater Struct, 2013, 22(9): 094024.
DOI: 10.1088/0964-1726/22/9/094024
Google Scholar
[12]
Lallart M, Wu Y C, Richard C, Guyomar D and Halvorsen E. Broadband modeling of a nonlinear technique for energy harvesting. Smart Mater Struct, 2012, 21(11): 115006.
DOI: 10.1088/0964-1726/21/11/115006
Google Scholar
[13]
Luo C, Hofmann H F. Wideband energy harvesting for piezoelectric devices with linear resonant behavior. IEEE Trans Ultrason Ferroelectr Freq Control, 2011, 58(7): 1294-1301.
DOI: 10.1109/tuffc.2011.1949
Google Scholar
[14]
Lallart M, Anton S R, Inman D J. Frequency self-tuning scheme for broadband vibration energy harvesting. J Intell Mater Syst Struct, 2010, 21: 897-906.
DOI: 10.1177/1045389x10369716
Google Scholar
[15]
Challa V R, Prasad M G, Fisher F T. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct, 2011, 20: 025004.
DOI: 10.1088/0964-1726/20/2/025004
Google Scholar
[16]
Zhu D, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol, 2010, 21: 022001.
DOI: 10.1088/0957-0233/21/2/022001
Google Scholar
[17]
Guan M J, Li Y T, Zhao Y. Study on a novel tunable piezoelectric energy harvesting structure. Applied Mechanics and Materials, 2014, 475-476: 515-519.
DOI: 10.4028/www.scientific.net/amm.475-476.515
Google Scholar
[18]
Friswell M I and Adhikari S. Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J Appl Phys, 2010, 108: 014901.
DOI: 10.1063/1.3457330
Google Scholar