Progress in Analysis of Neptunium in Environmental Samples by Inductively Coupled Plasma-Mass Spectrometry

Article Preview

Abstract:

In recent years, radionuclide monitoring and contamination control have been attached great importance. Wide attention has been paid to the measurement and analysis of Neptunium (237Np) as one of the radio-nuclides. With the development of mass-spectrometry technique, the inductively coupled plasma-mass spectrometry (ICP-MS) technique, with its outstanding advantage, has been widely applied to the measurement of 237Np in environmental and biological samples. In this paper, the progress in analysis of 237Np in environmental samples with ICP-MS technique is overviewed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1092-1093)

Pages:

789-794

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Q. Qi, G. Chen, J.Q. Xi, et. al. Environment Monitoring Management and Technique Vol. 15 (2003), p.11 (Chinese).

Google Scholar

[2] A.S. Hursthouse, M.S. Baxter, F.R. Livens, H.J. Dunean: J. Environ. Radioactivitv. Vol. 14 (1991), p.147.

Google Scholar

[3] Y.M. Ma, Y.R. Jin, Z.Q. Wang et. al. Radiation Protection, Vol. 14 (2009), p.21 (Chinese).

Google Scholar

[4] Z.S. Zhang, W.B. Zhou, T.W. Qian et. al. Radiation Protection, Vol. 6 (2003), p.38 (Chinese).

Google Scholar

[5] J. Wang, X.Y. Han, R.R. Zhang et. al. Environment Monitoring Management and Technique, Vol. 22 (2010), p.3 (Chinese).

Google Scholar

[6] R.J. Rosenberg: J. Radioanal. Nucl. Ch. Vol. 171 (1993), p.465.

Google Scholar

[7] A.S. Hursthouse, M.S. Baxter, Y.K. Mcka, et. al. J. Radioanal. Nucl. Ch. Vol. 157 (1992), p.281.

Google Scholar

[8] Y.Q. Ji: Studies on the determination of traces of Uranium, Thorium, Neptunium and Plutonium in environmental samples by ICP-MS. [D] Beijing: China Institute of Atomic Energy, 2001. (Chinese).

Google Scholar

[9] K. Morris, J.C. Buterworth, F.R. Livens: Estuar. Coast. Shelf S. Vol. 51 (2000), p.613.

Google Scholar

[10] S. Rollin, H. Sahli, R. Holzer, et. al. Appl. Radiat. Isotopes (2009), do: i 10. 1016/. j apradiso. 2009. 01. 041.

Google Scholar

[11] S.N. Nguyen, P.E. Miller, J.F. Wild and D.P. Hickman: Radioactivity & Radiochemistry, Vol 7 (1996), p.16.

Google Scholar

[12] Y.Q. Ji, J.Y. Li, S.G. Luo, et. al. J. Anal. Chem. Vol 371 (2001), p.49.

Google Scholar

[13] Y. Igarashi, H. Kawamur, K. Shiraishi and Y. Takaku: J. Aan1. At. Spect. Vol 4 (1989), p.571.

Google Scholar

[14] Q.J. Chen, H. Dahlgaard, P. Nielsens, et. al. J. Radioanal. Nucl. Ch. Vol. 253 (2002), p.451.

Google Scholar

[15] J.M.B. Moreno, M. Betti, I. GarciaLonsoJ: J. Anal. Atom. Spectrom. Vol. 12 (1997), p.355.

Google Scholar

[16] L. Perna, F. Bocci, L.A. Heras, et. al. J. Anal. Atom. Spectrom. Vol. 17 (2002), p.1166.

Google Scholar

[17] O.B. Egorov, J. Haram, O.T. Farmer, et. al. Analyst, Vol. 126 (2001), p.1594.

Google Scholar

[18] T.C. Kenna: J. Anal. Atom. Spectrom. Vol. 17 (2002), p.1471.

Google Scholar

[19] L. Houx, P. Poos: Anal. Chim. Acta, Vol. 608 (2008), p.105.

Google Scholar

[20] C. Riglet, O. Provitina, D. Jeanluc, et. al. J. Anal. Atom. Spectrom. Vol. 7 (1992), p.923.

Google Scholar