Application of Atomic Force Microscopy Characterization Technology in MgAl-CO32--LDH Exfoliation Behavior

Article Preview

Abstract:

MgAl-CO32--LDH was exfoliated via two-step ultrasonic treatment in formamide. Atomic force microscopy (AFM) was employed to characterize the thickness variation of MgAl-CO32--LDH during exfoliation. MgAl-CO32--LDH was dispersed in formamide with continuous ultrasonic treatment for 4 h, getting a non-transparent turbid liquid. The non-transparent turbid liquid was laid aside one day and separated into two phases, the upper semi-translucent colloidal suspension containing partial exfoliated MgAl-CO32--LDH was dispersed in formamide with continuous ultrasonic treatment again. The AFM results reveal that the thickness of pristine MgAl-CO32--LDH is 250 nm while the MgAl-CO32--LDH nanosheet obtained from the first-step ultrasonic treatment is 90 nm with obvious transverse sliding. The thickness of MgAl-CO32--LDH nanosheet obtained after the second-step ultrasonic treatment is about 7 nm, which is almost in agreement with the theoretical thickness of 10 monolayers of MgAl-CO32--LDH (0.76 nm).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-126

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. P. Liu, R. Z. Ma, Y. Ebina, N. Iyi, K. Takada, and T. Sasaki: Langmuir, vol. 23, (2007), pp.861-867.

Google Scholar

[2] J. Z. Wang, L. W. Zhao, H. M. Shi, and J. He: Angew. Chem. Int. Ed., vol. 50, (2011), pp.9171-9176.

Google Scholar

[3] L. J. Wang, S. P. Su, D. Chen, and C. A. Wilkie: Polym. Degrad. Stabil., vol. 94, (2009), pp.1110-1118.

Google Scholar

[4] E. Coronado, C. Marti-Gastaldo, E. Navarro-Moratalla, A. Ribera, and S. Tatay: Inorg. Chem., vol. 52, (2013), pp.6214-6222.

DOI: 10.1021/ic400734t

Google Scholar

[5] Y. B. Dou, X. X. Liu, M. F. Shao, J. B. Han, and M. Wei: J. Mater. Chem., vol. 1, (2013), pp.4786-4792.

Google Scholar

[6] T. Hibino: Appl. Clay. Sci., vol. 54, (2011), pp.83-89.

Google Scholar

[7] K. L. Xu, G. M. Chen, and J. Q. Shen: Appl. Clay. Sci., vol. 75, (2013), pp.114-119.

Google Scholar

[8] Y. X. Yan, Q. Liu, J. Wang, J. Wei, Z. Gao, T. Mann, Z. S. Li, Y. He, M. L. Zhang, and L. H. Liu: J. Colloid. Interf. Sci., vol. 371, (2012), pp.15-19.

Google Scholar

[9] Q. Wang and D. O. Hare: Chem. Rev., vol. 112, (2012), pp.4124-4155.

Google Scholar

[10] Y. You, H. Zhao, and G. F. Vance: Colloids and Surfaces A: Physicochem. Eng. Aspects., vol. 205, (2002), pp.161-172.

Google Scholar

[11] X. M. Lu, L. M. Meng, H. P. Li, N. Du, R. J. Zhang, and W. G. Hou: Mater. Res. Bull., vol. 48, (2013), pp.1512-1517.

Google Scholar