Flexible Graphene Paper as a Binder-Free Anode Material for Lithium Ion Batteries

Article Preview

Abstract:

Graphene paper (GP) with layered structure and highly conductive network is fabricated by a facile technique of vacuum filtration and studied as a single-component and binder-free anode of lithium ion batteries (LIBs). The process of fabrication of GP without any binder and high-temperature treatment, in the meantime, great improvement in both the capacity and cycling performance of the GP electrodes have compared with other kinds of traditional graphite electrode materials. Given the simplifying anode fabrication, low manufacturing costs and many electrochemical properties of the GP anode, it is regarded as an excellent anode material of LIB with great promise for its both excellent cycling performance and electrochemical properties. The specific capacity can reach to over 200 mAhg-1 after 60 charge-discharge cycles under the current rate of 50 mAg-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-340

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ando, X. Zhao, M. Ohkohchi, Carbon. Vol. 35(1997), p.153.

Google Scholar

[2] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. DU, F. Liu, H. J. Gao, Adv. Mater. Vol. 21(2009), p.2777.

Google Scholar

[3] E. J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. Vol. 8(2008), p.2277.

Google Scholar

[4] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. V. Haesendonck, Nanotechnol. Vol. 19(2008), p.305604.

DOI: 10.1088/0957-4484/19/30/305604

Google Scholar

[5] J. K. Lee, K.B. Smith, C. M. Hayner, H. H. Kung, Chem. Commun. Vol. 46(2010), p. (2025).

Google Scholar

[6] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature. Vol. 407 (2000), p.496.

DOI: 10.1038/35035045

Google Scholar

[7] A. G. Pandolfo, A. F. Hollenkamp, J. Power Sources , Vol. 157(2006), p.11.

Google Scholar

[8] B. J. Landi, M. J. Ganter, C. M. Schauerman, C. D. Cress, R. P. J . Raffaelle. Phys. Chem. C. Vol. 112(2008), p.7509.

Google Scholar

[9] A. Abouimrane, O.C. Compton, K. Amine, S. B. T. Nguyen, J Phys Chem, C. Vol. 114(2010), p.12800.

Google Scholar

[10] J. C. Meyer, A. K. Geim,M. I. Katsnelson, K. S. Novoselov, T. J. Booth & S. Roth, Nature. Vol. 446(2007), p.60.

Google Scholar

[11] E. Stolyarova, K. T. Rim, S. M. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, G. W. Flynn, P Natl Acad Sci USA. Vol. 104(2007), p.9209.

DOI: 10.1073/pnas.0703337104

Google Scholar

[12] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff. Graphene-Based Ultracapacitors. Nano Lett. Vol. 8(2008), p.3498.

DOI: 10.1021/nl802558y

Google Scholar

[13] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F Miao, C. N. Iau, Nano Lett. Vol. 8(2008), p.902.

DOI: 10.1021/nl0731872

Google Scholar

[14] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. Vol. 146(2008), p.351.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[15] H. Gwon, H. S. Kim, K. U. Lee, D. H. Seo, Y. C. Park, Y. S. Lee, B. T. Ahn, K. Kang, Energy Envviron. Sci. Vol. 4(2011), p.1277.

Google Scholar

[16] H. Chen, B. Muller, K. J. Gilmore, G. G. Wallace, D. Li, Adv. Mater. Vol. 20(2008), p.3557.

Google Scholar

[17] G. K. Wang, X. S, F. Y. Lu, H. T. Sun, M. P. Yu, W. L. Jiang, C. S. Liu, J. Lian. Small. Vol. 8(2012), p.452.

Google Scholar

[18] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, J. Phys. Chem. B. Vol. 110(2006), p.8535.

DOI: 10.1021/jp060936f

Google Scholar

[19] S. Stankovich , D. A. Dikin, R. D. Piner, K. A. Kohlhass, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon. Vol. 45(2007), p.1558.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[20] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguen, R. S. Ruoff, Nature. Vol. 448(2007), p.457.

DOI: 10.1038/nature06016

Google Scholar

[21] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. Vol. 3(2008), p.101.

Google Scholar

[22] A. Lerf , H. Y. He , M. Forster , J. Klinowski. Structure of graphite oxide revisited. J. Phys. Chem. B . Vol. 102(1998), p.4477.

DOI: 10.1021/jp9731821

Google Scholar

[23] T. Szabo , O. Berkesi, P. Forgo , K. Josepovits , Y. Ssnakis , D. Petridis , I. Dekany. Chem. Mater. Vol. 18(2006), p.2740.

Google Scholar

[24] J. L. Bahr , J. M. Tour. J. Mater. Chem. Vol. 12( 2002), p. (1952).

Google Scholar

[25] G. Eda , G. Fanchini , M. Chhowalla , Nat. Nanotechnol. Vol. 3(2008), p.270.

Google Scholar

[26] J. R. Lomeda , C. D. Doyle , D. V. Kosynkin , W. F. Hwang , J. M. Tour , J. Am. Chem. Soc. Vol. 130(2008), p.16201.

Google Scholar

[27] S. Stankovich , R. D. Piner , S. T. Nguyen , R. S. Ruoff, Carbon. Vol. 44(2006), p.3342.

Google Scholar

[28] M. Choucair , P. Thordarson , J. A. Stride , Nat. Nanotechnol. Vol. 4(2009), p.30.

Google Scholar

[29] F. Tuinstra , J. L. Koenig , Chem. Phys, Vol. 53(1970), p.1126.

Google Scholar

[30] H. Fujimoto , A. Mabuchi , K. Tokumitsu , T. Kasuh , J. Power. Sources , Vol. 54(1995), p.440.

Google Scholar

[31] D. lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu, Q. H. Yang, ACS Nano . Vol. 3(2009), p.3730.

Google Scholar

[32] P. Guo, H. Song, X. Chen. Electrochem. Commun, Vol. 11(2009), p.1320.

Google Scholar

[33] S. Paek, E. Yoo, I. Honma, Nano Lett. Vol. 9(2009), p.72.

Google Scholar

[34] B. J. Landi, M. J. Ganter, C. M. Schauerman, C. D. Cress, R. P. Raffaelle, J. Phys. Chem. Vol. 112(2008), p.7509.

Google Scholar

[35] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. Vol. 80(1958), p.1339.

Google Scholar