Preparation of Sodium Paeonolsilate Intercalated into Layered Double Hydroxides and its Release Properties

Article Preview

Abstract:

A controlled release composite has been prepared by intercalation of sodium paeonolsilate (PAS) into Mg/Al layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The chemical composites of PAS-LDH were revealed by elemental analysis. Release tests of the PAS-LDH composite showed that no burst release phenomenon occurred at the beginning stage and a high release ratio of PAS (89.8%) was obtained, exhibiting controlled release behavior. Furthermore, the parabolic diffusion model was used to simulate the release kinetics of PAS from the LDH carrier, indicating that the intraparticle diffusion via ion-exchange is the rate-determining step in the release process. It is significance in this work for introducing the PAS-LDH composite to develop antifouling materials with long-term activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-354

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Cao, J.D. Wang, H.S. Chen and D.R. Chen: Chin. Sci. Bull. 56 (2011) 598-612.

Google Scholar

[2] M. Lejars, A. Margaillan and C. Bressy: Chem. Rev. 112 (2012) 4347−4390.

Google Scholar

[3] G. Sorensena, A.L. Nielsena, M.M. Pedersena, S. Poulsenb, H. Nissenc and M. Pouls: Prog. Org. Coat. 68 (2010) 299-306.

Google Scholar

[4] R. R. Price and J.M. Schnur: J. Coat. Tech. 75 (2003) 53-59.

Google Scholar

[5] Levis S R, Deasy P B. Characterisation of halbysite for use as a microtubular drug delivery system, Int. J. Pharm. 253 (2003) 145–157.

Google Scholar

[6] P. Handa, C. Fant and M. Nydén: Prog. Org. Coat. 57 (2006) 376–382.

Google Scholar

[7] G.R. Williams and D. O'Hare: J. Mater. Chem. 16 (2006) 3065–3074.

Google Scholar

[8] W.Y. Shi, M. Wei, L. Jin and C.J. Li: J. Mol. Catal. B: Enzym 47 (2007) 58–65.

Google Scholar

[9] A.I. Khan, L. Lei, A.J. Norquist and D. O'Hare: Chem. Commun. (2001) 2342–2343.

Google Scholar

[10] M.D. Arco, E. Cebadera, S. Gutierrez, C. Marten, M.J. Montero, V. Rives, J. Rocha and M.A. Sevilla: J. Pharm. Sci. 93 (2004) 1649–1658.

Google Scholar

[11] S. Vial, V. Prevot, F. Leroux and C. Forano: Micropor. Mesopor. Mater. 107 (2008) 190–201.

Google Scholar

[12] R.P. Bontchev, S. Liu, J.L. Krumhansl, J. Voigt and T.M. Nenoff: Chem. Mater. 15 (2003) 3669–3675.

Google Scholar

[13] A. Legrouri, M. Badreddine, A. Barroug, A. DeRoy and J.P. Besse: J. Mater. Sci. Lett. 18 (1999) 1077–1079.

DOI: 10.1023/a:1006647505203

Google Scholar

[14] F. Camerel, J. Barberá, J. Otsuki, T. Tokimoto, Y. Shimazaki, L.Y. Chen, S.H. Liu, M.S. Lin, C.C. Wu and R. Ziessel: Adv. Mater. 20 (2008) 3462–3467.

DOI: 10.1002/adma.200800059

Google Scholar

[15] L. Li and S.P. Schwendeman: J. Control. Release 101 (2005) 163–173.

Google Scholar

[16] C. Wischke1 and S.P. Schwendeman: Int. J. Pharm. 364 (2008) 298–327.

Google Scholar

[17] C.R. Young, C. Dietzsch, M. Cerea, T. Farrell, K.A. Fegely, A. Rajabi-Siahboomi and J.W. McGinity: Int. J. Pharm. 301 (2005) 112–120.

DOI: 10.1016/j.ijpharm.2005.05.025

Google Scholar

[18] T. Kodama, Y. Harada, M. Ueda, K. Shimizu, K. Shuto and S. Komarneni: Langmuir 17 (2001) 4881–4886.

DOI: 10.1021/la001774w

Google Scholar