Simulation Study of the Volume Properties and Diffusion of 1-Butyl-3-Methylimidazolium Tetrafluoroborate/Ethanol Mixture

Article Preview

Abstract:

The molecular dynamics simulation method is used to study volume properties and diffusion of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])/ethanol mixture with different molar fractions of ethanol. It is found that the density of the mixture decrease with the increasing of the mole fraction of ethanol, whereas the diffusion coefficient increases. The excess molar volume all appear negative over the entire mole fraction of ethanol which agree well with experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-366

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Welton, Chem. Rev. Vol. 99 (1999), p.2071.

Google Scholar

[2] K. R. Seddon, J. Chem. Tech. Biotechnol., Vol. 68 (1997), p.351.

Google Scholar

[3] J. S. Wilkes, Green Chem., Vol. 4 (2002), p.73.

Google Scholar

[4] Y. Chauvin, L. Mussmann, H. Olivier, Angew. Chem., Int. Ed. Engl., Vol. 34 (1996), p.2698.

Google Scholar

[5] R. D. Roger, K.R. Seddon, Science, Vol. 302 (2003), p.792.

Google Scholar

[6] J. Dupont, R. F. de Souza, P. A. Z. Suarez, Chem. Rev., Vol. 102 (2002), p.3667.

Google Scholar

[7] J. G. Huddleston, H. D. Willaver, A. E. Visser, D. Rogers, Chem. Commun., 1998, p.1765.

Google Scholar

[8] S. Park, R. J. Kazlauskas, Curr. Opin. Biotechnol., Vol. 14 (2003), p.432.

Google Scholar

[9] L. Wang, L. Chang, B. Zhao, Z. Yuan, Inorg. Chem., Vol. 47 (2008), p.1443.

Google Scholar

[10] G. C. Tian in: Green Solvents II: Properties and Applications of Ionic Liquids, edtied by Ali Mohammad, Dr. Inamuddin, Springer, UK(2012).

DOI: 10.1007/978-94-007-2891-2

Google Scholar

[11] G. C. Tian, J. Li, Y. X. Hua, Trans. Nonferrous Met. Soc. China, Vol. 20 (2010), p.513.

Google Scholar

[12] J. M. Crosthwaite, S. N. V. K. Aki, E. J. Maggin, J. Phys. Chem. B, Vol. 108 (2004), p.5113.

Google Scholar

[13] E. Rile, J. Pico, S Garcia-Garabal, L. M. Varela, Fluid Phase Equilib, Vol. 285 (2009), p.83.

Google Scholar

[14] Y. Qiao, F. Yan, S. Xia, S. Yin, P. Ma, J. Chem. Eng. Data, Vol. 56 (2011), p.2379.

Google Scholar

[15] H. Yao, S. Zhang, J. Wang, Q. Zhou, J. Chem. Eng. Data, Vol. 57 (2012), p.875.

Google Scholar

[16] G. Raabe, J. Kohler, J. Chem. Phys., Vol. 129 (2008), p.144503.

Google Scholar

[17] S. Jahangiri, M. Taghikhani, H. Behnejad, J. Mol. Phys., Vol. 8 (2008), p.1015.

Google Scholar

[18] T. Mendez-Morales, J Carrete, O. Gallego, J. Phys. Chem. B, Vol. 115 (2011), p.11170.

Google Scholar

[19] D. Wang, G. C. Tian, Acta Phys. -Chim. Sin., Vol. 28 (2012), p.2558.

Google Scholar

[20] G.C. Tian,H. Feng, J. Zhang, Advanced Materials Research, Vol. 549, p.152.

Google Scholar

[21] Y. Jeon, J. Sung, C. Seo, H. Lim, D. Kim, J. Phys. Chem. B, Vol. 112 (2008), p.4735.

Google Scholar

[22] J. G. Huddleston, A.E. Visser, W.M. Reichert, R.D. Rogers, , Green Chem, Vol 3 (2001), p.156.

Google Scholar

[23] I. N. Canongia-Lopes, J. Deschamps, A. Padua, J. Phys. Chem. B, Vol. 108 (2004), p.2038.

Google Scholar

[24] J. de Andrade. E. S. Bees, H. Stassen, J. Phys. Chem. B, Vol. 106 (2002), p.13344.

Google Scholar

[25] W. D. Cornell, P. Cieplak, C.L. Bayly, J. Am. Chem. Soc., Vol. 117 (1995), p.5179.

Google Scholar

[26] A. P. Lyubartsev, A. Laaksonen, Comput. Phys. Comm., Vol. 128 (2000), p.565.

Google Scholar