First-Principles Calculation of Al-Cu-Mg Alloy Strengthening Phase

Article Preview

Abstract:

In this study, equilibrium lattice parameters, heat of formation and cohesive energy of four kinds of typical phases with different structure intermetallic compound in Al-Cu-Mg alloy were investigated by first-principles calculations based on density functional theory via CASTEP software. The calculation results are analyzed and show that ternary strengthening phase Al2CuMg generated first when Mg content is higher, while binary strengthening phase Al2Cu or Al3Cu2 first generated and more stable when Mg content is low in Al-Cu-Mg alloy which indicates that element Cu and Al alloying capacity significantly higher than that of Mg and Al element.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-113

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. M. Asl, F. Khomamizadeh. Effect of rare earth elements addition and T6 heat treatment on creep properties of Mg-Al-Zn alloy. Magnesium Technology 2009, 2009: 483-488.

Google Scholar

[2] H. Somekawa, Y. Osawa, A. Singh, et al. Rare-earth free wrought-processed magnesium alloy with dispersion of quasicrystal phase. Scripta Materialia, 2009, 61(7): 705-708.

DOI: 10.1016/j.scriptamat.2009.06.008

Google Scholar

[3] D. W. Yi, J. D. Xing, S. Q. Ma, et al. Effect of rare earth-aluminum additions on the microstructure of a semisolid low carbon Fe-B cast alloy. Materials Science and Technology, 2011, 27(10): 1518-1526.

DOI: 10.1179/026708310x12756557336391

Google Scholar

[4] H. Shen, H. Liang, W. D. Yang, et al. Study of effect of Ce-rich mixed rare earth on corrosivity of new 5XXX series aluminum alloys. Advanced Materials Research, 2011, 314-316: 1449-1455.

DOI: 10.4028/www.scientific.net/amr.314-316.1449

Google Scholar

[5] D. X. Yang, J. P. Xie, A. Q. Wang, et al. Effects of rare earth la on microstructures, mechanical properties and sliding wear behavior of high-aluminum zinc foundry alloy ZA30. Applied Mechanics and Materials, 2012, 117-119: 360-363.

DOI: 10.4028/www.scientific.net/amm.117-119.360

Google Scholar

[6] W. Luo, J. Xiong, J. Wang, et al. Effects of rare earth on microstructure and properties of squeezing casting 6063 aluminum alloy. Special Casting & Nonferrous Alloys, 2012, 32(5): 476-478.

Google Scholar

[7] J. L. Cai, D. Q. Yi, H. W. Wang, et al. Effect of Ag on precipitation behavior of Ω phase in Al-Cu-Mg alloy. Chinese Journal of Nonferrous Metals, 2011, 21(7): 1504-1512.

Google Scholar

[8] X. Chen, Z. Y. Liu, S. Bai, et al. Alloying behavior of erbium in an Al-Cu-Mg alloy. Journal of Alloys and Compounds, 2010, 505(1): 201-205.

DOI: 10.1016/j.jallcom.2010.06.029

Google Scholar

[9] Q. L. Pan, X. Y. Liu, S. F. Cao, et al. Study on the interrupted aging treatment of Al-Cu-Mg-Ag heat-resistant alloy. Journal of Materials Engineering, 2012, 11: 47-51.

Google Scholar

[10] Y. X. Gu, Z. Y. Liu, D. E. Yu, et al. Effect of aging condition on the mechanical properties of an Al-Cu- Mg-Ag alloy. Advanced Materials Research, 2012, 476-478(1): 42-45.

DOI: 10.4028/www.scientific.net/amr.476-478.42

Google Scholar

[11] B. Hammer, L. B. Hansen, J. K. Norkov. Improved adsorption energetics withen density-functional theory using revised Perdew-Burke-Emzerh of functionals. Phys. Rev. B, 1999, (59): 7413-7421.

DOI: 10.1103/physrevb.59.7413

Google Scholar

[12] G. P. Franscis, M. C. Payne. Finite Basis Set Corrections to Total Energy Pseudopotential Calcaulations. J. Phys. Condens. Matter, 1990, (2): 4395-4404.

DOI: 10.1088/0953-8984/2/19/007

Google Scholar