Homogenous Thin Films Prepared on Microchannel Plates via Atomic Layer Deposition

Article Preview

Abstract:

Oxide thin films such as aluminum oxide doped with zinc (AZO), and aluminum oxide (Al2O3) were prepared in the pores of microchannel plate (MCP) by atomic layer deposition (ALD), which is a precise control thin film thickness on substrate with high aspect ratio structure. In this paper, homogenous oxide thin films deposited on varied substrates were prepared by ALD technology under different conditions, and the morphology, element distribution and structure of deposited samples are systematically investigated by scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and x-ray diffraction (XRD) respectively, The results show that ALD technique is a good method to grow homogenous thin films on MCP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-97

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Inami, K. (2012). MCP-PMT development for Belle-II TOP counter., Physics Procedia 37: 683-690.

DOI: 10.1016/j.phpro.2012.02.417

Google Scholar

[2] Matthew JWetsteina, b., Bernhard Adamsa, Matthieu Cholleta, PrestonWebsterc (2012). systems-level characterization of MCP detector assemblies, using a pulsed sub-picosecond laser.

Google Scholar

[3] Siegmund, O. H. W., et al. (2012). 20 cm Sealed Tube Photon Counting Detectors with Novel Microchannel Plates for Imaging and Timing Applications., Physics Procedia 37: 803-810.

DOI: 10.1016/j.phpro.2012.03.722

Google Scholar

[4] Siegmund, O. H. W., et al. (2012).

Google Scholar

[5] Tremsin, A. S., et al. (2012). High-Resolution Strain Mapping Through Time-of-Flight Neutron Transmission Diffraction with a Microchannel Plate Neutron Counting Detector., Strain 48(4): 296-305.

DOI: 10.1111/j.1475-1305.2011.00823.x

Google Scholar

[6] Abdulraheem Y, Gordon I, Bearda T, Meddeb H, Poortmans J. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD. AIP Advances. 4 (2014) 057122-14.

DOI: 10.1063/1.4879807

Google Scholar

[7] Hsu C. U, Wu J. R, Lu Y. T, Flood D. J, Barron A. R, Chen L, C. Fabrication and characteristics of black silicon for solar cell applications: An overview. Materials science in semiconductor processing. 25 (2014) 2-17.

DOI: 10.1016/j.mssp.2014.02.005

Google Scholar

[8] Anyebe E. A, Zhuang Q, Kesaria M, Krier A. The structural evolution of InN nanorods to microstructures on Si (111) by molecular beam epitaxy. Semiconductor science and technology. 29 (2014) 085010-7.

DOI: 10.1088/0268-1242/29/8/085010

Google Scholar

[9] Tallarico D. A, Gobbi A. L, et al., Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Materials science & engineering. C, Materials for biological applications. 43 (2014) 45-49.

DOI: 10.1016/j.msec.2014.07.013

Google Scholar

[10] Kumar R. R, Gaddam V, Rao K. N, Rajanna K. Low temperature VLS growth of ITO nanowires by electron beam evaporation method. Materials research express. 1 (2014) 035008-7.

DOI: 10.1088/2053-1591/1/3/035008

Google Scholar

[11] Nechache R, Nicklaus M, Diffalah N, Ruediger A, Roser F. Pulsed laser deposition growth of rutile TiO2 nanowires on Silicon substrates. Applied Surface Science. 313 (2014) 48-52.

DOI: 10.1016/j.apsusc.2014.05.123

Google Scholar

[12] A. M. Shevjakov, G. N. Kuznetsova, V. B. Aleskovskii, in Chemistry of High Temperature Materials, Proceedings of the Second USSR Conference on High Temperature Chemistry of Oxides, Leningrad, USSR, 26-29 November 1965, pp.149-155, in Russian.

Google Scholar

[13] T. Suntola, J. Antson, U.S. Patent No. 4, 058, 430 (15 November 1977).

Google Scholar

[14] C. Soto, W. T. Tysoe, J. Vac. Sci. Technol. A 9, 2686 (1991).

Google Scholar

[15] A. C. Dillon, A. W. Ott, J. D. Way, S. M. George, Surf. Sci. 322, 230 (1995).

Google Scholar

[16] R. L. Puurunen, S. M. K. Airaksinen, A. O. I. Krause, J. Catal. 213, 281 (2003).

Google Scholar

[17] Ritala, M., et al. (2006). Rapid Coating of Through-Porous Substrates by Atomic Layer Deposition., Chemical Vapor Deposition 12(11): 655-658.

DOI: 10.1002/cvde.200604228

Google Scholar

[18] Elam, J. W., et al. (2006). Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials., Journal of Nanomaterials 2006: 1-5.

Google Scholar