Influence of Annealing Temperature on the Properties of Zn-Sb Composite Thin Films by Magnetron Sputtering

Article Preview

Abstract:

Zn-Sb based composite thin films have been prepared by radio frequency magnetron sputtering using a Zn4Sb3 compound target followed by thermal annealing. Sample structure and surface morphology were analyzed by X-ray diffraction (XRD) and atomic force microscopy (AFM). The electrical properties of the films were studied by Hall measurements. The X-ray diffraction patterns reveal that the intensity of diffraction peak of ZnSb phase is enhanced as temperature increasing. Results of AFM shows the rms roughness is getting big with increasing temperature due to the growing crystal grains. Hall measurements indicate that the Zn-Sb composite thin films annealed at different temperatures are p-type conducting with carrier concentrations being on the order of 1019 cm-3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-79

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Jeffrey Snyder, and Eric S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.

Google Scholar

[2] Z.H. Zheng, P. Fan, P.J. Liu, J.T. Luo, X.M. Cai, G.X. Liang, D.P. Zhang, F. Ye, Y.Z. Li, and Q.Y. Lin, Enhanced thermoelectric properties of mixed zinc antimonide thin films via phase optimization , Appl. Surf. Sci. 292(2014) 823-827.

DOI: 10.1016/j.apsusc.2013.12.056

Google Scholar

[3] M.I. Fedorov, L.V. Prokof'eva, D.A. Pshenay-Severin, A.A. Shabaldin, P.P. Konstantinov, New Interest in Intermetallic Compound ZnSb, J. Electron. Mater. 43 (2014) 2314-2319.

DOI: 10.1007/s11664-014-3053-1

Google Scholar

[4] H. B. Lee, J.H. We, H.J. Yang, K. Kim, K.C. Choi, B.J. Cho, Thermoelectric properties of screen-printed ZnSb film, Thin Solid Films 519 (2011) 5441-5443.

DOI: 10.1016/j.tsf.2011.03.031

Google Scholar

[5] Lasse Bjerg, Bo B. Iversen, and Georg K. H. Madsen, Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3, Phys. Rev. B 89 (2014) 024304.

Google Scholar

[6] B. Fang, Z.G. Zeng, X.Z. Yan, and Z.Y. Hu, Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering, J Mater Sci: Mater Electron 24 (2013) 1105-1111.

DOI: 10.1007/s10854-012-0888-1

Google Scholar

[7] L.T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3, J. Alloys Compd. 358 (2003) 252-256.

DOI: 10.1016/s0925-8388(03)00074-4

Google Scholar

[8] L.D. Zhao, S.H. Lo, Y.S. Zhang, S.H. Hui, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, 508 (2014) 373-377.

DOI: 10.1038/nature13184

Google Scholar

[9] T. Caillat, J. -P. Fleurial, and A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids 58 (1997) 1119-1125.

DOI: 10.1016/s0022-3697(96)00228-4

Google Scholar