Research of Structural and Optical Properties of MgZnO Films Annealed at Different Oxygen Partial Pressures

Article Preview

Abstract:

Structural and optical properties of MgZnO films were investigated by annealing in oxygen at different pressures. The crystalline quality of the annealed films improves with increasing annealing pressure. After annealing at 3.03×105 Pa, the grain size became larger and oxygen content in the annealed films increased. This was attributed to the recrystallization of the films under high annealing pressure. However, a decreased oxygen content was found by annealing the films at 1.01×105 or 2.05×10-3 Pa. According to the defect levels and the relationship between photoluminescence spectra and annealing conditions, it was suggested that the emission peak located at 2.270 eV in photoluminescence spectra was related to interstitial oxygen (Oi) which will compensate the donor defects (Zni or/and VO) and lead to the MgZnO film transforming into a p-type conduction under the annealing pressure of 3.03×105 Pa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-61

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. K. Tang, G. K. L. Wong, and P. Yu, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett. 72 (1998) 3270.

DOI: 10.1063/1.121620

Google Scholar

[2] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohiani, S. Chichibu,S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater. 4 (2005).

DOI: 10.1038/nmat1284

Google Scholar

[3] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84 (2004) 3654.

DOI: 10.1063/1.1738932

Google Scholar

[4] R. L. Hoffman, B. J. Norris, and J. F. Wager, ZnO-based transparent thin-film transistors, Appl. Phys. Lett. 82 (2003) 733.

DOI: 10.1063/1.1542677

Google Scholar

[5] V. Chivukula, D. Ciplys, M. Shur, P. Dutta, ZnO nanoparticle surface acoustic wave UV sensor, Appl. Phys. Lett. 96 (2010) 233512.

DOI: 10.1063/1.3447932

Google Scholar

[6] F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, and R. H. Friend, Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells, Appl. Phys. Lett. 99 (2011) 183307.

DOI: 10.1063/1.3656973

Google Scholar

[7] X. Y. Chen, A. M. C. Ng, F. Fang, A. B. Djurišić, W. K. Chan, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, The Influence of the ZnO Seed Layer on the ZnO Nanorod/GaN LEDs, J. Electrochem. Soc. 157 ( 2010) H308.

DOI: 10.1149/1.3282743

Google Scholar

[8] Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, and X. W. Fan, and Z. K. Tang, Room temperature p-n ZnO blue-violet light-emitting diodes , Appl. Phys. Lett. 90 (2007) 042113.

DOI: 10.1063/1.2435699

Google Scholar

[9] Z. F. Shi, Y. T. Zhang, X. C. Xia, W. Zhao, H. Wang, L. Zhao, X. Dong, B. L. Zhang, and G. T. Du, Electrically driven ultraviolet random lasing from an n-MgZnO/i-ZnO/SiO2/p-Si asymmetric double heterojunction, Nanoscale. 5 (2013) 5080.

DOI: 10.1039/c3nr33445g

Google Scholar

[10] S. Fujita, H. Tanaka, and S. Fujita, MBE growth of wide band gap wurtzite MgZnO a) quasi-alloys with MgO/ZnO superlattices for deep ultraviolet optical functions, J. Cryst. b) Growth. 278 (2005) 264.

DOI: 10.1016/j.jcrysgro.2005.01.029

Google Scholar

[11] Y. S. Choi, J. W. Kang, B. H. Kim, D. K. Na, S. J. Lee, and S. J. Park, Improved electroluminescence from ZnO light-emitting diodes by p-type MgZnO electron blocking layer, Opt. Express. 21 (2013) 11698.

DOI: 10.1364/oe.21.011698

Google Scholar

[12] J. Y Kong, L. Li, Z. Yang, and J. L Liu, Ultraviolet light emissions in MgZnO/ZnO double heterojunction diodes by molecular beam epitaxy, J. Vac. Sci. Technol. B. 28 (2010) C3D10.

DOI: 10.1116/1.3374436

Google Scholar

[13] P. C. Wu, H. Y. Lee, and C. T. Lee, Enhanced light emission of double heterostructured a) MgZnO/ZnO/MgZnO in ultraviolet blind light-emitting diodes deposited by vapor cooling b) condensation system, Appl. Phys. Lett. 100 (2012) 131116.

DOI: 10.1063/1.3698387

Google Scholar

[14] Y. G. Zhang, H. Y. He, B. C. Pan, Tailoring the band gap of ZnO/MgZnO a) coaxial nanowires by the size and the component of Mg, Phys. Chem. Chem. Phys. 15 (2013) b) 2932.

DOI: 10.1039/c2cp44130f

Google Scholar

[15] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition, Jpn. J. Appl. Phys. 36 (1997) L1453.

DOI: 10.1143/jjap.36.l1453

Google Scholar

[16] W. M. Cho, Y. J. Lin, C. J. Liu, L. R. Chen, Y. T. Shih, P. Chen, Luminescence behavior and compensation effect of N-doped ZnO films deposited by rf magnetron sputtering under various gas-flow ratios of O2/N2, J. Lumin. 145 (2014) 884.

DOI: 10.1016/j.jlumin.2013.09.029

Google Scholar

[17] K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takami zu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates, Appl. Phys. Lett. 97 (2010).

DOI: 10.1063/1.3459139

Google Scholar

[18] B. Panigrahy, D. Bahadur, and S. Affiliations, Fabrication of p-Type Li-Doped ZnO Films by a) RF Magnetron Sputtering, RSC. Adv. 2(2012) 6222.

Google Scholar

[19] K. C. Chiu, Y. W. Kao, J. H. Jean, p-type Phosphorus doped ZnO nanostructures: an electrical, optical, and magnetic properties study, J. Am. Ceram. Soc. 93 (2010) 1860.

Google Scholar

[20] Y. Cui and F. Bruneval, p-type doping and codoping of ZnO based on nitrogen is ineffective: a) An ab initio clue, Appl. Phys. Lett. 97 (2010) 042108.

DOI: 10.1063/1.3473762

Google Scholar

[21] M. S. Oh, S. H. Kim, and T. Y. Seong, Growth of nominally undoped p-type ZnO on Si by a) pulsed-laser deposition, Appl. Phys. Lett. 87 (2005) 122103.

DOI: 10.1063/1.2056576

Google Scholar

[22] Y. F. Li, B. Yao, Y. M. Lu, Z. P. Wei, Y. Q. Gai, C. J. Zheng, Z. Z. Zhang, B. H. Li, D. Z. Shen, X. W. Fan, and Z. K. Tang, Realization of p -type conduction in undoped MgxZn1−xO thin films by controlling Mg content, Appl. Phys. Lett. 91(2007).

DOI: 10.1063/1.2816914

Google Scholar

[23] W. W. Liu, B. Yao, Y. F. Li, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zhang, D. Z. Shen, X. W. Fan, Oxygen partial pressure dependence of the properties of MgZnO thin films during annealing, J Mater Sci. 45 (2010) 6206.

DOI: 10.1007/s10853-010-4714-y

Google Scholar

[24] Y. M. Sun (2000) PhD thesis, University of Science and Technology of China, July (2000).

Google Scholar

[25] B. X. Lin, Z. X. Fu, Y. B. Jia, and G. H. Liao, Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions, J. Electrochem. Soc. 148 (2001) G110.

DOI: 10.1149/1.1346616

Google Scholar