ArF Excimer Laser Assisted Solution Based Metal Induced Crystallization of Amorphous Silicon Films

Article Preview

Abstract:

Amorphous silicon films with and without spin-coating aluminum-salt-solution are treated by 193nm ArF excimer laser with different laser energies. It is observed that the crystalline fraction increases along with the laser energy. By comparation, with the help of Al, higher crystalline volume fraction and lower in-plane stress can be achieved at the same laser energy (2.9mJ). Large grain size of 200~300nm and maximum crystalline fraction of 82.3% are obtained in Al-salt-solution spin-coated sample, which is treated with laser energy of 3.2mJ,and its carrier mobility is 56.3cm2/Vs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-49

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Brotherton SD, Ayres JR, Edwards MJ, Fisher CA, Glaister C, Gowers JP, McCulloch DJ, Trainor M, Laser crystallised poly-Si TFTs for AMLCDs , Thin Solid Films, 337 (1999)188.

DOI: 10.1016/s0040-6090(98)01176-6

Google Scholar

[2] Kim YH, Hwang CS, Song YH, Chung CH, Ko YW, Sohn CY, Kim BC, Lee JH, Excimer laser annealed poly-Si thin film transistor with self-aligned lightly doped drain structure, Thin Solid Films, 440(2003)169.

DOI: 10.1016/s0040-6090(03)00853-8

Google Scholar

[3] Singh J, Chandra S and Chand A , Strain studies in LPCVD polysilicon for surface micromachined devices, Sensors and Actuators A, 77(1999)133.

DOI: 10.1016/s0924-4247(98)00241-6

Google Scholar

[4] Matsuyama T, Terada N, Baba T, Sawada T, Tsuge S, Wakisaka K and Tsuda S, High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method, J. Non-Cryst. Solids, 198(1996)940.

DOI: 10.1016/0022-3093(96)00091-9

Google Scholar

[5] Pereira L, Barquinha P, Fortunato E and Martins R, Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors, Thin Solid Films, 487(2005)102.

DOI: 10.1016/j.tsf.2005.01.045

Google Scholar

[6] Kim KH, Park SJ, Kim AY and Jang J, Growth of large-grain poly-Si by FE-SMC, J. Non-Cryst. Solids, 299(2002)83.

DOI: 10.1016/s0022-3093(01)01181-4

Google Scholar

[7] Gontad F, Conde JC, Filonovich S, Cerqueira MF, Alpuim P, Chiussi S, Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers, Thin Solid Films 536 (2013).

DOI: 10.1016/j.tsf.2013.04.005

Google Scholar

[8] Dries Van Gestel, Ivan Gordon, Jef Poortmans, Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective, Solar Energy Materials & Solar Cells. 119 (2013) 261.

DOI: 10.1016/j.solmat.2013.08.014

Google Scholar

[9] Z.J. Yuan, Q.H. Lou, J. Zhou, J.X. Dong, Y.R. Wei, Z.J. Wang, H.M. Zhao, G.H. Wu, Flat-top green laser crystallization of amorphous silicon thin film, Opt. Laser Technol, 41 (2009) 380.

DOI: 10.1016/j.optlastec.2008.09.003

Google Scholar

[10] J. Jin, Z.J. Yuan, L. Huang, S. Chen, W.M. Shi, Z.C. Cao, Q.H. Lou, Laser crystallization of amorphous silicon films investigated by Raman spectroscopy and atomic force microscopy, Appl. Surf. Sci. 256(2010)3453.

DOI: 10.1016/j.apsusc.2009.12.052

Google Scholar

[11] I. De Wolf, Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits, Semicond. Sci. Technol., 11(1996)139.

DOI: 10.1088/0268-1242/11/2/001

Google Scholar