[1]
R. Langer, J.P. Vacanti, Tissue engineering, Science. 260 (1993) 920-6.
Google Scholar
[2]
A.J. Salgada, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and future trends. Macromol Biosci. 4 (2004) 743-65.
DOI: 10.1002/mabi.200400026
Google Scholar
[3]
S.M. Kurtz, J.N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials. 28(32) (2007) 4845-69.
DOI: 10.1016/j.biomaterials.2007.07.013
Google Scholar
[4]
Y.C. Chou, D.C. Chen, W.A. Hsieh, W.F. Chen, P.S. Yen, T. Harnod, T.L. Chiou, Y.L. Chang, C.F. Su, S.Z. Lin, S.Y. Chen, Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts, Journal of Clinical Neuroscience. 15(11) (2008).
DOI: 10.1016/j.jocn.2007.05.016
Google Scholar
[5]
K Fujihara, Z.M. Huang, S. Ramakrishna, K. Satknanantham, H. Hamada, Performance study of braided carbon/PEEK composite compression bone plates, Biomaterials. 24(15) (2003) 2661-7.
DOI: 10.1016/s0142-9612(03)00065-6
Google Scholar
[6]
M.S. Abu Bakar, M.H.W. Cheng, S.M. Tang, S.C. Yu, K Liao, C.T. Tan, Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants, Biomaterials. 24 (2003).
DOI: 10.1016/s0142-9612(03)00028-0
Google Scholar
[7]
S. Yu, K.P. Hariram, R. Kumar, P. Cheang, K.K. Aik, In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites, Biomaterials. 26(15) (2005) 2343-52.
DOI: 10.1016/j.biomaterials.2004.07.028
Google Scholar
[8]
L. Wang, L.Q. Weng, S.H. Song, Z.Y. Zhang, S.L. Tian, R. Ma, Characterization of polyetheretherketone-hydroxyapatite nanocomposite materials, Materials Science and Engineering A. 528 (2011) 3689-96.
DOI: 10.1016/j.msea.2011.01.064
Google Scholar
[9]
L. Wang, L.Q. Weng , S.H. Song, Q.J. Sun, Mechanical properties and microstructure of polyetheretherketone-hydroxyapatite nanocomposite materials, Materials Letters. 64 (2010) 2201-4.
DOI: 10.1016/j.matlet.2010.06.067
Google Scholar
[10]
L. Wang, L.Q. Weng , L.L. Wang S.H. Song, Hydrothermal synthesis of hydroxyapatite nanoparticles with various counterions as templates, Journal of the Ceramic Society of Japan. 118(12) (2010) 1195-8.
DOI: 10.2109/jcersj2.118.1195
Google Scholar
[11]
J.T. Liao, X.J. Wang, Y. Zuo, L. Zhang, J.Q. Wen, Y.B. Li, Surface modification of nano-hydroxyapatite with silane agent, Journal of Inorganic Materials. 23(1) (2008) 145-9.
DOI: 10.3724/sp.j.1077.2008.00145
Google Scholar
[12]
H.C. Dai, Study on the modification of Silica an Properties of Composites formed by the Silica and Polymer, thesis (2002).
Google Scholar
[13]
Y.H. Lai, M.C. Kuo, J.C. Huang, M. Chen, On the PEEK composites reinforced by surface-modified nano-silica, Materials Science and Engineering A. 458 (1-2) (2007) 158-69.
DOI: 10.1016/j.msea.2007.01.085
Google Scholar