π-Lithium Noncovalent Interaction between π-Bond-Containing Compounds and NH2Li: A way of Construction for Supramolecular Materials

Article Preview

Abstract:

In this paper, we optimized the geometries the π-lithium bond complexes between three π-bond-containing compounds, ethylene, acetylene, benzene, and amido-lithium have been calculated at DFT-D3/6-311++G**, MP2/6-311++G** and QCISD/6-311++G** theoretical levels. All the equilibrium geometries were confirmed to be stable state by analytical frequency computations. The calculations showed that all the bond lengths of the electron acceptors increased obviously and the red shift of N-Li stretching frequency occurred after complexes formed. The calculated binding energies, ΔEtot, of the four complexes are-38.11, -41.05 and-45.02 kJ·mol-1 via the DFT-D3 method, respectively. Natural bond orbital theory analysis revealed that the three complexes were all formed with π-s type lithium bond interaction between three π-lithium bond donor molecules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-335

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cai, Z. L.; Reimers, J. R. J. Phys. Chem. A, Vol. 106(2002), p.8769.

Google Scholar

[2] Battistutta, R.; Mazzorana, M.; Sarno, S.; Kazimierczuk, Z.; Zanotti, G.; Pinna, L. A. Chem. Biol., Vol. 12 (2005), p.1211.

DOI: 10.2210/pdb1zog/pdb

Google Scholar

[3] Himmel, D. M.; Das, K.; Clark, A. D.; Hughes, S. H.; Benjahad, A.; Oumouch, S.; Guillemont, J.; Coupa, S.; Poncelet, A.; Csoka, I.; Meyer, C.; Andries, K.; Nguyen, C. H.; Grierson, D. S.; Arnold, E. J. Med. Chem., Vol. 48(2005), p.7582.

DOI: 10.2210/pdb2be2/pdb

Google Scholar

[4] Jiang, Y.; Alcaraz, A. A.; Chen, J. M.; Kobayashi, H.; Lu, Y. J.; Snyder, J. P. J. Med. Chem., Vol. 49(2006), p.1891.

Google Scholar

[5] Trogdon, G.; Murray, J. S.; Concha, M. C.; Politzer, P. J. Mol. Model., Vol. 13(2007), p.313.

Google Scholar

[6] Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. USA, Vol. 101(2004), p.16789.

DOI: 10.1073/pnas.0407607101

Google Scholar

[7] Takeuchi, T.; Minato, Y. J.; Takase, M.; Shinmori, H. Tetrahedron Lett., Vol. 46(2005), p.9025.

Google Scholar

[8] Xu, J. W.; Liu, X. M.; Ng, J. K. P.; Lin, T. T.; He, C. B. J. Mater. Chem., Vol. 16(2006), p.3540.

Google Scholar

[9] Metrangolo, P.; Resnati, G.; Pilati, T.; Liantonio, R.; Meyer, F. J. Polym. Sci., Part A: Polym. Chem., Vol. 45(2007), p.1.

DOI: 10.1002/pola.21725

Google Scholar

[10] Sourisseau, S.; Louvain, N.; Bi, W. H.; Mercier, N.; Rondeau, D.; Boucher, F.; Buzare, J. Y.; Legein, C. Chem. Mater., Vol. 19(2007), p.600.

DOI: 10.1021/cm062380e

Google Scholar

[11] Cariati, E.; Forni, A.; Biella, S.; Metrangolo, P.; Meyer, F.; Resnati, G.; Righetto, S.; Tordin, E.; Ugo, R. Chem. Commun., (2007), p.2590.

DOI: 10.1039/b702724a

Google Scholar

[12] Politzer, P.; Murray, J. S.; Concha, M. C. J. Mol. Model., Vol. 13(2007), p.643.

Google Scholar

[13] Sander, S. P.; Friedl, R. R.; Yung, Y. L. Science, Vol. 245(1989), p.1095.

Google Scholar

[14] Calvert, J. G.; Lazrus, A.; Kok, G. L.; Heikes, B. G.; Walega, J. G.; Lind, J.; Cantrell, C. A. Nature, Vol. 31 (1985)7, p.27.

DOI: 10.1038/317027a0

Google Scholar

[15] Solimannejad, M.; Pejov, L. J. Phys. Chem. A, Vol. 109(2005), p.825.

Google Scholar

[16] Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem. Res., Vol. 38(2005), p.386.

Google Scholar

[17] Yang, Y.; Zhang, W. J. J. Mol. Struct. (Theochem), Vol. 814(2007), p.113.

Google Scholar

[18] Dunbar, R. C. J. Phys. Chem. A, Vol. 104(2000), p.8067.

Google Scholar

[19] Zhao, Y.; Zeng, Y. L.; Zhang, X. Y.; Zheng, S. J.; Meng, L. P. Acta Phys-Chim Sinica. (2006), p.22.

Google Scholar

[20] Kollman, P. A.; Liebman, J. F.; Allen, L. C. J. Am. Chem. Soc., Vol. 92(1970), p.1142.

Google Scholar

[21] Ault, B. S.; Pimentel, G. C. J. Phys. Chem., Vol. 79(1975), p.621.

Google Scholar

[22] S. F. Boys, F. Bernardi: Calculation of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol. Phy., Vol. 19(1970), p.553.

DOI: 10.1080/00268977000101561

Google Scholar

[23] Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev., Vol. 88 (1988), p.899.

Google Scholar

[24] Glendening, E. D.; Badenhoop, J. K.; Reed, A. E., Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Nature Bond Orbital Program, Version 5. 0, Madison, Theoretical Chemistry Institute, University of Wisconsin, (2001).

Google Scholar

[25] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al.: Pittsburgh, PA: Gaussian, Inc, (2009).

Google Scholar