Oxygen Impurity in Germanium Single Crystals Determination by Infrared Spectrometry

Article Preview

Abstract:

Oxygen impurity in Germanium single crystals has been characterized using Fourier transformed infrared spectrometry. The crystals were grown by Czochralski method in an argon atmosphere. The oxygen concentration in crystals was determined on optical density from the absorption band at 843 cm1. It was established that oxygen dissolved concentration in Germanium is variable from 0,2·1016 to 1,3·1016 сm3. The oxygen band maximum shifts toward 856 cm1 when its concentration increases under the influence of annealing in the oxygen containing atmosphere with ≤ 10−3 Па.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Rakwal, E. Bamberg. Journal of materials processing technology. Vol. 209, № 8 (2009). p.3740–3751.

Google Scholar

[2] F. Dimroth, S. Kurtz. MRS Bull. Vol. 32, № 03 (2007). p.230–235.

Google Scholar

[3] X. Deng, E.A. Schiff, A. Luque, S. Hegedus. Handbook of photovoltaic science and engineering. A. Luque, John Wiley & Sons, Chichester. (2003). p.359.

Google Scholar

[4] Claeys, C., & Simoen, E. (Eds. ). Germanium-based technologies: from materials to devices. Oxford, Elsevier (2007). p.19.

Google Scholar

[5] B. Depuydt, A. Theuwis, I. Romandic. Materials Science in Semiconductor Processing. Vol. 9, № 4–5 (2006). p.437–443.

DOI: 10.1016/j.mssp.2006.08.002

Google Scholar

[6] T. Taishi, H. Ise, Yu Murao, T. Osawa, M. Suezawa, Y. Tokumoto, Y. Ohno, K. Hoshikawa, I. Yonenaga. Journal of Crystal Growth. Vol. 312, № 19 (2010). p.2783–2787.

DOI: 10.1016/j.jcrysgro.2010.05.045

Google Scholar

[7] L.I. Khirunenko, V.I. Shakhotsov, V.K. Shinkarenko, F.M. Vorobkalo. Sov. Phys. Semicond. Vol. 24, № 663 (1990). p.344–347.

Google Scholar

[8] B. Pajot and P. Clauws, in: The Proceedings of the 18th International Conference on the Physics of Semiconductors. Vol. 2. World Scientific Publishing (1987). p.911–914.

Google Scholar

[9] P. Clauws. Materials science and Engineering. Vol. 36, № 1 (1996). p.213–220.

Google Scholar

[10] I. Yonenaga, T. Taishi, H. Ise, Yu Murao, K. Inoue, T. Ohsawa, Y. Tokumoto, Y. Ohno, Y. Hashimoto. Physica B. Vol. 407, № 15 (2012). p.2932–2934.

DOI: 10.1016/j.physb.2011.08.038

Google Scholar

[11] K. Inoue, T. Taishi, Y. Tokumoto, Y. Murao, K. Kutsukake. J. Appl. Phys. Vol. 113, 073501 (2013). p.1–5.

Google Scholar

[12] B. Pajot, B. Clerjaud in: Optical Absorption of Impurities and Defects in Semiconducting Crystals. Springer Berlin Heidelberg (2013). p.283.

DOI: 10.1007/978-3-642-18018-7

Google Scholar

[13] O.I. Podkopaev, T.V. Kulakovskaya, A.F. Shimanskiy, A.M. Pogodaev, M.N. Vasilyeva. Journal of Siberian Federal University. Engineering & Technologies. Vol. 5. № 6, (2012). pp.631-637.

Google Scholar