[1]
K. Sitarama Raju, V. Subramanya Sarma, A. Kauffmann, et al. High Strength and Ductile Ultrafine-grained Cu–Ag Alloy through Bimodal Grain Size, Dislocation Density and Solute Distribution. Acta Materialia, vol. 61, p.228–238, (2013).
DOI: 10.1016/j.actamat.2012.09.053
Google Scholar
[2]
X. H An, S. D Wu, Z. F Zhang. Influnece of Stacking Fault Energy on the Microstructures, Tensile and Fatigue Properties of Nanostructured Cu-Al Alloys [J]. Acta Metallurgica Sinica, vol. 50, no. 2, pp.191-201, (2014).
Google Scholar
[3]
X. Y Liu, X Zhao, X Yang, et al. The Evolution of Hardness Homogeneity in Hommercially Pure Ti Processed by ECAP [J]. Journal of Wuhan University of Technology (Materials Science Edition), vol. 29, no. 3, pp.578-584, (2014).
DOI: 10.1007/s11595-014-0960-1
Google Scholar
[4]
W. K Wang, Y. P Song, D. S Gao, et al. Experimental and Finite Element Analyses of Plastic Deformation in the Compressive Stage of Copper in High-pressure Torsion [J]. Rare Metal Materials and Engineering, vol. 42, no. 2, pp.301-303, (2013).
Google Scholar
[5]
G. C Ren, G. Q Zhao. Effects of Deformation Temperature on Deformation Behavior of AZ31 Magnesium Alloy During Equal Channel Angular Pressing[J]. The Chinese Journal of Nonferrous Metals, vol. 23 , no. 7, pp.1789-1795, (2013).
Google Scholar
[6]
Hyun C Y, Kim H K. Grain Size Dependence of Flow Stress in ECAPed Ti with Constant Texture[J]. Trans. Nonferrous Met. Soc. China, vol. 22, p.673−s677, (2012).
DOI: 10.1016/s1003-6326(12)61784-1
Google Scholar
[7]
W. Skrotzki, L.S. Tóth, B. Klöden, etc. Texture after ECAP of a Cube-oriented Ni Single Crystal. Acta Materialia, vol. 56, pp.3439-3441, (2008).
DOI: 10.1016/j.actamat.2008.03.017
Google Scholar
[8]
Z. H Liu, L. W Chen, J Xi. Dislocation Refinement Mechanism of High Stacking Fault Energy 7003 Al alloy during ECAP deformation [J]. Rare Metal Materials and Engineering, vol. 42, no. 7, pp.1407-1410, (2013).
Google Scholar
[9]
Young G. K, Seung N, Byung U. L, et al. Mechanical and Electrical Responses of Nanostructured Cu-3wt. %Ag Alloy Fabricated by ECAP and Cold Rolling. Journal of Alloys and Compounds, vol. 50, no. 4, p.448–451, (2010).
DOI: 10.1016/j.jallcom.2010.02.198
Google Scholar
[10]
W Wei. Investigation on Fabrication, Investigation on Fabrication Microstructure and Mechanical Properties of Bulk Ultrafine-grained Copper[D]. Nanjin: Nanjing University of Science and Technology, (2004).
Google Scholar
[11]
J. M Wang, K. K Zhou and J Lu. Influence of Stacking Fault Energy on Grain Refinement During Severe Shear Deformation[J]. Chiese Journal of Mechanical Engineering, vol. 44, no. 11, pp.126-131, (2008).
DOI: 10.3901/jme.2008.11.126
Google Scholar
[12]
Segal V M. Equal Channel Angular Extrusion: From Macro-mechanics to Structure Formation[J]. Materials Science Engineering A, pp.271-322, (1999).
DOI: 10.1016/s0921-5093(99)00248-8
Google Scholar
[13]
Y. Z Tian, Q. Q Duan, H. J Yang, et al. Effects of Route on Microstructural Evolution and Mechanical Properties of Cu-8 wt Pct Ag Alloy Processed by Equal Channel Angular Pressing[J]. Metallurgical and Materials Transaction A, vol. 41, pp.2290-2303, (2010).
DOI: 10.1007/s11661-010-0313-4
Google Scholar
[14]
W. Z Han, Z. F Zhang, S. D Wu, et al, The Nature of Shear Flow Lines in ECAPed Metals and Alloys[J]. Philos. Mag. Lett, vol. 87, pp.735-741, (2007).
Google Scholar
[15]
W. Z Han, H. J Yang, X. H An, et al, Evolution of Initial Grain Boundaries and Shear Bands in Cu Bicrystals During One-pass Equal Channel Angular Pressing[J]. Acta Mater, vol. 57, pp.1132-1146, (2009).
DOI: 10.1016/j.actamat.2008.11.001
Google Scholar