The Impact of Generalized Stacking Fault Energy on the Mechanical Properties of Shuffle Dislocation in Zigzag Single-Walled Carbon Nanotubes

Article Preview

Abstract:

The calculation of generalized stacking fault energy for covalent materials exists several relaxation methods. And the modification factor of the restoring force should be different for different relaxation. In order to study the impact of generalized stacking fault energy on the mechanical properties of dislocations, the dislocation energy, Peierls barrier and Peierls stress of shuffle dislocation in zigzag single-walled carbon nanotube (SWCNT) under different modification factors are studied by the improved Peierls-Nabarro (P-N) theory. It is found that the misfit energies decreased, and the strain and total energies increased with increasing of the modification factor Δ. With the modification factor Δ of the restoring force changes from -0.2 to 0.5, the dislocation energy changes from 17.4eV to 19.3eV. The Peierls barriers Eand σp Peierls stresses increased first and then decreased and the results are not as same as we thought. The impact of generalized stacking fault energy on mechanical properties of dislocations is not so simple as we thought and need to be further studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-237

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. P. Ewels, M. I. Heggie, Catalysed transformations in sp2 carbon materials.

Google Scholar

[2] B. I. Yakobson, in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by R. S. Ruo and K. M. Kadish (ECS, Paris, 1997), Vol. 97- 42, p.549.

Google Scholar

[3] B. I. Yakobson, Appl. Phys. Lett. 72, 918 (1998).

Google Scholar

[4] M. Buongiorno Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B 57, R4277 (1998).

DOI: 10.1103/physrevb.57.r4277

Google Scholar

[5] K. Asaka and T. Kizuka, Phys. Rev. B 72, 115431 (2005).

Google Scholar

[6] D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park and M. Tinkham, Phys. Rev. B 67, 033407(2003).

Google Scholar

[7] J.Y. Huang,S. Chen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhaus and Z. F. Ren, Phys. Rev. Lett. 94, 236802 (2005).

Google Scholar

[8] J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus and Z.F. Ren, Nature (London) 439, 281 (2006).

DOI: 10.1038/439281a

Google Scholar

[9] Y. Nakayama, A. Nagataki, O. Suekane, X. Cai and S. Akita, Jpn. J. Appl. Phys. 44, L720 (2005).

DOI: 10.1143/jjap.44.l720

Google Scholar

[10] H. E. Troiani, M. Miki-Yoshida, G. A. Camacho-Bragado, M. A. L. Marques, A. Rubio, J. A. Ascencio and M. Jose-Yacaman, Nano Lett. 3, 751 (2003).

DOI: 10.1021/nl0341640

Google Scholar

[11] H. L. Zhang, International Conference on Mechanical Design, Manufacture and Automation Engineering (Phuket, Thailand: EDStech Publications, Inc. ) p.411 (2014).

Google Scholar

[12] S.F. Wang, H.L. Zhang, and X.Z. Wu, Euro. Phys. Lett. 90, 56004(2010).

Google Scholar

[13] S.F. Wang, J. Phys. A: Math. Theor. 41, 015005(2008); S.F. Wang, J. Phys. A: Math. Theor. 42, 025208(2009).

Google Scholar

[14] S.F. Wang, Phys. Lett. A 313, 408(2003).

Google Scholar

[15] Y.G. Yao and T. Wang, Phys. Rev. B 59, 8232(1999).

Google Scholar

[16] S. F. Wang, Chin. Phys. 15, 1301(2006).

Google Scholar

[17] X. Z. Wu and S. F. Wang, Acta Mech. Solida Sin. 20, 363(2007).

Google Scholar

[18] J.P. Hirth and J. Lothe, Theory of dislocation 2nd ed. (Wiley, New York, 1982).

Google Scholar