Estimation for the Si-O Structures Based on the Homology Concept

Article Preview

Abstract:

The first atomically resolved transmission electron microscopic (TEM) pictures of silica gels showed visible differences between their molecular densities (MD), which might be the molecular foundation of their distinctly different macroscopic properties, like porosity, surface area, fragility, etc. [1, 2]. Thus, learning to control MD promises the first time to add rational chemical design to the largely empirical synthesis methods of silica gels with desirable physical properties. However there is no known method for the quantitative comparison of molecular densities of these amorphous materials. We report in this paper a new numerical image-analyzing method, utilizing the mathematical theory of homology [3], which allows to measure quantitatively the molecular density of silica gels from their high resolution TEM pictures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-116

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Halasz, I., Kierys, A., Goworek, J., J. Colloid and Interface Science, 2015, 441, 65.

Google Scholar

[2] Kierys, A., Rawski, M., Goworek, J., Halasz, I., Advanced Materials Letters 2015, 6, 40-46.

DOI: 10.5185/amlett.2015.amwc1194

Google Scholar

[3] Nakane K, Tsuchihashi Y and N. Matsuura; A Simple Mathematical Model Utilizing a Topological Invariant for Automatic Detection of Tumor Areas in Digital Tissue Images. Diagnostic Pathology 2013, 8 (Suppl 1).

DOI: 10.1186/1746-1596-8-s1-s27

Google Scholar

[4] Halasz, I. (editor); Silica and Silicates in Modern Catalysis; Transworld Research Network, Kerala, India, (2010).

Google Scholar

[5] Patterson, R. E. Surfactant Sci. Ser. 2006, 131, 779.

Google Scholar

[6] Wu, Y.; Xue, P.; Kang, Y.; M. Hui; K. M. Analytical Chemistry 2013, 85, 3166.

Google Scholar

[7] Morais, E. C.; Correa, G. G.; Brambilla, R.; Radtke, C.; Baibich, I. M.; dos Santos, J. H. Z. Colloids and Surfaces, B: Biointerfaces 2013, 103, 422.

DOI: 10.1016/j.colsurfb.2012.10.059

Google Scholar

[8] Warren, S. C.; Perkins, M. R.; Adams, A. M.; Kamperman, M.; Burns, A. A.; Arora, H.; Herz, E.; Teeraporn Suteewong, T.; Sai, H.; Li, Z.; Werner, J.; Song, J.; Werner-Zwanziger, U.; Zwanziger, J. W.; Grätzel, M.; DiSalvo, F. J.; Wiesner, U. Nature Materials 2012, 1, 460.

DOI: 10.1038/nmat3274

Google Scholar

[9] J. Livage, J., Stud. Surf. Sci. Catal. 1994, 85, 1-42.

Google Scholar

[10] Sandoval-Diaz, L. E., Coy-Barrera, E. D., Trujillo, C. A., React. Kinet. Mech. Cat. 2012, 105, 335.

Google Scholar

[11] Norström, J., Nilsson, E., P. Jarvol, M. Nayeri, A. Palmqvist, J. Bergenholtz, A. Matic, J. Colloid Interface Sci. 2011, 356, 37-45.

DOI: 10.1016/j.jcis.2010.12.085

Google Scholar

[12] Hould, N. D., Foster, A., Lobo,R. F. Microporous Mesoporous Materials 2011, 142, 104-115.

Google Scholar

[13] I. Halasz, M. Agarwal, R. Li, N. Miller, in Characterization of Porous Solids, Ed. by S. Kaskel, P. L. Llewellyn, F. Rodriguez-Reinoso, N. A. Seaton, RSC Publishing, Cambridge, UK, 2009, 318, 416-423.

Google Scholar

[14] I. Halasz, M. Agarwal, R. E. Patterson, Stud. Surf. Sci. Catal. 2010, 175, 209-216.

Google Scholar

[15] A. Kierys, M. Dziadosz, J. Goworek, J. Colloid Interf. Sci. 2010, 349, 361-365.

Google Scholar

[16] R. Zaleski, A. Kierys, M. Grochowicz, M. Dziadosz, J. Goworek, J. Colloid Interf. Sci., 2011, 358, 268-276.

DOI: 10.1016/j.jcis.2011.03.008

Google Scholar

[17] Halasz, I., Kierys, A., Goworek, J., Liu, H., Patterson, R. E., J. Phys. Chem. C 2011, 115, 24788.

Google Scholar

[18] Zaleski, R., Kierys, A., Dziadosz, M., Goworek, J., Halasz, I., RSC Advances 2012, 2, 3729.

DOI: 10.1039/c2ra20147j

Google Scholar

[19] Hibi, T., Commutative Algebra and Combinatorial Logic. Springer-Verlag, Tokyo, Inc, (1995).

Google Scholar

[20] CHomP [http: /chomp. rutgers. edu/projects/].

Google Scholar