[1]
A.D. Paola, E. García-Lópeza, G. Marcìa, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater. 211-212 (2012) 3-29.
Google Scholar
[2]
W. Dong, Y. Guo, Y. Zhang, H. Li, H. Liu, Photoelectric properties of BiVO4 thin films deposited on fluorine doped tin oxide substrates by a modified chemical solution deposition process, Int. J. Hydrogen Energ. 39 (2014) 5569-5574.
DOI: 10.1016/j.ijhydene.2014.02.006
Google Scholar
[3]
U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater. 170 (2009) 520-529.
DOI: 10.1016/j.jhazmat.2009.05.039
Google Scholar
[4]
C. Yu, S. Dong, J. Feng, J. Sun, L. Hu, Y. Li, J. Sun, Controlled synthesis of uniform BiVO4 microcolumns and advanced visible-light-driven photocatalytic activity for the degradation of metronidazole-contained wastewater, Environ. Sci. Pollut. R. 21 (2014).
DOI: 10.1007/s11356-013-2224-6
Google Scholar
[5]
W. Liu, Y. Yu, L. Cao, G. Su, X. Liu, L. Zhang, Y. Wang, Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation, J. Hazard. Mater. 181 (2010) 1102-1108.
DOI: 10.1016/j.jhazmat.2010.05.128
Google Scholar
[6]
X. Wang, H. Liu, X. Wan, Surfactant-assisted hydrothermal preparation of monoclinic bismuth vanadate microspheres and visible-light-driven photocatalytic activity, Micro Nano Lett. 8 (2013) 822-826.
DOI: 10.1049/mnl.2013.0492
Google Scholar
[7]
A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst, J. Mol. Catal. A-Chem. 304 (2009) 28-32.
DOI: 10.1016/j.molcata.2009.01.019
Google Scholar
[8]
U.M. García Pérez, S.S. -Guzmán, A.M. -de la Cruz, U.O. Méndez, Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose, J. Mol. Catal. A-Chem. 335 (2011) 169-175.
DOI: 10.1016/j.molcata.2010.11.030
Google Scholar
[9]
Y. Shen, M. Huang, Y. Huang, J. Lin, J. Wu, The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation, J. Alloy. Comp. 496 (2010) 287-292.
DOI: 10.1016/j.jallcom.2010.01.144
Google Scholar
[10]
R. Umemura, H. Ogawa, H. Ohsato, A. Kan, A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic, J. Eur. Ceram. Soc. 25 (2005) 2865-2870.
DOI: 10.1016/j.jeurceramsoc.2005.03.156
Google Scholar
[11]
B. Vaidhyanathan, M. Ganguli, K.J. Rae, Fast solid state synthesis of metal vanadates and chalcogenides using microwave irradiation, Mater. Res. Bull. 30 (1995) 1173-1177.
DOI: 10.1016/0025-5408(95)00099-2
Google Scholar
[12]
M.V. Shankar, K.B.R. Varma, Crystallization of ferroelectric bismuth vanadate in Bi2O3 –V2O5 –SrB4O7 glasses, J. Non-Cryst. Solids 226 (1998) 145-154.
DOI: 10.1016/s0022-3093(97)00490-0
Google Scholar
[13]
A. Tücks, H.P. Beck, The photochromic effect of bismuth vanadate pigments. Part I: Synthesis, characterization and lightfastness of pigment coatings, J. Solid State Chem. 178 (2005) 1145-1156.
DOI: 10.1016/j.jssc.2004.11.025
Google Scholar
[14]
N. Murakami, N. Takebe, T. Tsubota, T. Ohno, Improvement of visible light photocatalytic acetaldehyde decomposition of bismuth vanadate/silica nanocomposites by cocatalyst loading, J. Hazard. Mater. 211–212 (2012) 83-87.
DOI: 10.1016/j.jhazmat.2011.12.038
Google Scholar
[15]
R. Al-Gaashani, S. Radiman, N. Tabet, A.R. Daud, Effect of microwave power on the morphology and optical property of zinc oxide nano-structures prepared via a microwave-assisted aqueous solution method, Mater. Chem. Phys. 125 (2011) 846-852.
DOI: 10.1016/j.matchemphys.2010.09.038
Google Scholar
[16]
Y.C. Lee, C.S. Yang, H.J. Huang, S.Y. Hu, J.W. Lee, C.F. Cheng, C.C. Huang, M.K. Tsai, H.C. Kuang, Structural and optical properties of ZnO nanopowder prepared by microwave-assisted synthesis, J. Lumin. 130 (2010) 1756-1759.
DOI: 10.1016/j.jlumin.2010.04.005
Google Scholar
[17]
P. Pookmanee, P. Longchin, W. Kangwansupamonkon, R. Puntharod, S. Phanichphant, Microwave-assisted synthesis bismuth vanadate (BiVO4) powder, Ferroelectrics 455 (2013) 35-42.
DOI: 10.1080/00150193.2013.843414
Google Scholar
[18]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 14-0688, Swarthmore, PA.
Google Scholar
[19]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 14-0133, Swarthmore, PA.
Google Scholar
[20]
A.K. Bhattacharya, K.K. Mallick, A. Hartridge, Phase transition in BiVO4, Mater. Lett. 30 (1997) 7-13.
Google Scholar
[21]
S.M. Thalluri, C.M. Suarez, M. Hussain, S. Hernandez, A. Virga, G. Saracco, N. Russo, Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO4 for water oxidation, Ind. Eng. Chem. Res. 52 (2013).
DOI: 10.1021/ie402930x
Google Scholar
[22]
M. Gotić, S. Musić, M. Ivanda, M. Šoufek, S. Popović, Synthesis and characterisation of bismuth(III) vanadate, J. Mol. Struct. 744–747 (2005) 535-540.
DOI: 10.1016/j.molstruc.2004.10.075
Google Scholar
[23]
D.S. Yu, J.C. Han, L. Ba, PbTiO3 nanosized ceramics, Am. Ceram. Soc. Bull. 81 (2002) 38-39.
Google Scholar