[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
N. Sano, H. Akazawa, T. Kikuchi and T. Kanki, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen, Carbon 41 (2003) 2159–2179.
DOI: 10.1016/s0008-6223(03)00215-x
Google Scholar
[3]
N. Sano, and M. Uehara, Selective formation of Fe-included carbon nanocapsules and nanotubes by fall-to-stop pyrolysis reactor with ferrocene, Chem. Eng. Process. 45 (2006) 555-558.
DOI: 10.1016/j.cep.2005.12.004
Google Scholar
[4]
J. Qiu, Q. Li, Z. Wang, Y. Sun, H. Zhang, CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide, Carbon 44 (2006) 2565-2568.
DOI: 10.1016/j.carbon.2006.05.030
Google Scholar
[5]
Y.T. Lee, N.S. Kim, J.H. Park, J.B. Han, Y.S. Choi, H. Ryu and H.J. Lee, Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000°C, Chem. Phys. Lett. 372 (2003) 853–859.
DOI: 10.1016/s0009-2614(03)00529-3
Google Scholar
[6]
K.M. Samant, S.K. Haram, and S. Kapoor, Synthesis of carbon nanotubes by catalytic vapor decomposition (CVD) method: Optimization of various parameters for the maximum yield, Pramana-J. Phys. 8(1) (2007) 51-60.
DOI: 10.1007/s12043-007-0005-9
Google Scholar
[7]
S. Maghsoodi, A. Khodadadi, and Y. Mortazavi, A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor, Appl. Surf. Sci., 256 (2010) 2769-2774.
DOI: 10.1016/j.apsusc.2009.11.026
Google Scholar
[8]
W. Ren, F. Li, S. Bai, and H.M. Cheng, The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method, J. Nanosci. Nanotechno. 6(5) (2006) 1339-1345.
DOI: 10.1166/jnn.2006.301
Google Scholar
[9]
J.P. Huo, H.H. Song and X.H. Chen, Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene, Carbon, 42 (2004) 3177–3182.
DOI: 10.1016/j.carbon.2004.08.007
Google Scholar
[10]
Y. Li, H. Wang, G. Wang, and J. Gao, Synthesis of single-walled carbon nanotubes from heavy oil residue, Chem. Eng. J. 211-212 (2012) 255-259.
DOI: 10.1016/j.cej.2012.09.031
Google Scholar
[11]
X. Liu, Y. Yang, H. Liu, W. Ji, C. Zhang, and B. Xu, Carbon nanotubes from catalytic pyrolysis of deoiled asphalt, Mater. Lett. 61 (2007) 3916-3919.
DOI: 10.1016/j.matlet.2006.12.057
Google Scholar
[12]
C. Quan, A. Li, and N. Gao, Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil, J. Hazard. Mater. 179 (2010) 911-917.
DOI: 10.1016/j.jhazmat.2010.03.092
Google Scholar
[13]
P. Ghosh, R.A. Afre, T. Soga, and T. Jimbo, A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil, Mater. Lett. 61 (2007) 3768-3770.
DOI: 10.1016/j.matlet.2006.12.030
Google Scholar
[14]
P. Ghosh, T. Soga, R.A. Afre, and T. Jimbo, Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: turpentine oil, J. Alloy. Compd. 462 (2008) 289-293.
DOI: 10.1016/j.jallcom.2007.08.027
Google Scholar
[15]
A.B. Suriani, A.A. Azira, S.F. Nik, R. Md. Nor, and M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett. 63 (2009) 2704-2706.
DOI: 10.1016/j.matlet.2009.09.048
Google Scholar
[16]
A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M. Salina, M.S. Rosmi, J. Rosly, R. Md. Nor, and M. Rusop, Vertically aligned carbon nanotubes synthesized from waste chicken fat, Mater. Lett. 101 (2013), 61-64.
DOI: 10.1016/j.matlet.2013.03.075
Google Scholar
[17]
T. Tomie, S. Inoue, M. Kohno, Y. Matsumura, Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram, Diam. Relat. Mater. 19 (2010) 1401-1404.
DOI: 10.1016/j.diamond.2010.08.005
Google Scholar
[18]
S. Bai, F. Li, Q.H. Yang, H.K. Cheng and J.B. Bai, Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures, Chem. Phys. Lett. 376 (2003) 83–89.
DOI: 10.1016/s0009-2614(03)00959-x
Google Scholar
[19]
T. Charinpanitkul, N. Sano, P. Puengjinda, J. Klanwan, N. Akrapattangkul, and W. Tanthapanichakoon, Naphthalene as an alternative carbon source for pyrolytic synthesis of carbon nanostructures, J. Annal. Appl. Pyrolysis 86 (2009) 386-390.
DOI: 10.1016/j.jaap.2009.08.001
Google Scholar
[20]
P. Puengjinda, N. Sano, W. Tanthapanichakoon and T. Charinpanitkul, Selective synthesis of carbon nanotubes and nanocapsules using naphthalene pyrolysis assisted with ferrocene, J. Ind. Eng. Chem. 15(3) (2009) 375-80.
DOI: 10.1016/j.jiec.2008.11.003
Google Scholar
[21]
H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes, Synthetic Metals 103 (1999) 2555-2558.
DOI: 10.1016/s0379-6779(98)00278-1
Google Scholar
[22]
Z. Li, P. Wu, C. Wang, X. Fan , W. Zhang , X. Zhai , C. Zeng, Z. Li, J. Yang, J. Hou, Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources, ACS Nano 5(4) (2011) 3385-3390.
DOI: 10.1021/nn200854p
Google Scholar
[23]
Z. Kónya, I. Vesselényi, J. Kiss, A. Farkas, A. Oszkó, I. Kiricsi, XPS study of multiwall carbon nanotube synthesis on Ni-, V-, and Ni, V-ZSM-5 catalysts, Appl. Catal. A 260 (2004) 55-61.
DOI: 10.1016/j.apcata.2003.10.042
Google Scholar