Synthesis of Carbon Nanoparticles via Co-Pyrolysis of Waste Slop Oil and Ferrocene

Article Preview

Abstract:

Co-pyrolysis of slop oil with ferrocene was carried out to convert waste of petroleum into carbon nanoparticles (CNPs). Since slop oil is a mixture of hydrocarbons (HCs) with broad molecular weight distribution, it could be simply fractionated into some certain fractions by batch distillation. Distillate containing hydrocarbons with small molecules was mainly focused as an alternative carbon source for synthesis of CNPs. A two-stage furnace was employed for evaporating a mixture of distillated slop oil and ferrocene at 200 °C in the 1st stage of the furnace and then formation of CNPs at 900 °C could be observed in the 2nd stage. Laboratory-grade ferrocene was mixed with slop oil with a designated weight-ratio of 1:2. Microscopic analyses based on SEM and TEM micrographs reveals that CNPs obtained from distillated slop oil mostly consist of bundles of multi-walled carbon nanotubes (MWCNTs) with nominal diameters of 20-50 nm. Raman spectroscopic analyses of the synthesized CNPs exhibit the notably high value of IG/ID, suggesting that the synthesized CNPs preferably consist of graphitic nanostructure. Moreover, TGA analysis shows that 39.8 and 32.9 wt% of Fe contents exist in the CNP samples synthesized from original slop oil and distillated slop oil, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-103

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] N. Sano, H. Akazawa, T. Kikuchi and T. Kanki, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen, Carbon 41 (2003) 2159–2179.

DOI: 10.1016/s0008-6223(03)00215-x

Google Scholar

[3] N. Sano, and M. Uehara, Selective formation of Fe-included carbon nanocapsules and nanotubes by fall-to-stop pyrolysis reactor with ferrocene, Chem. Eng. Process. 45 (2006) 555-558.

DOI: 10.1016/j.cep.2005.12.004

Google Scholar

[4] J. Qiu, Q. Li, Z. Wang, Y. Sun, H. Zhang, CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide, Carbon 44 (2006) 2565-2568.

DOI: 10.1016/j.carbon.2006.05.030

Google Scholar

[5] Y.T. Lee, N.S. Kim, J.H. Park, J.B. Han, Y.S. Choi, H. Ryu and H.J. Lee, Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000°C, Chem. Phys. Lett. 372 (2003) 853–859.

DOI: 10.1016/s0009-2614(03)00529-3

Google Scholar

[6] K.M. Samant, S.K. Haram, and S. Kapoor, Synthesis of carbon nanotubes by catalytic vapor decomposition (CVD) method: Optimization of various parameters for the maximum yield, Pramana-J. Phys. 8(1) (2007) 51-60.

DOI: 10.1007/s12043-007-0005-9

Google Scholar

[7] S. Maghsoodi, A. Khodadadi, and Y. Mortazavi, A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor, Appl. Surf. Sci., 256 (2010) 2769-2774.

DOI: 10.1016/j.apsusc.2009.11.026

Google Scholar

[8] W. Ren, F. Li, S. Bai, and H.M. Cheng, The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method, J. Nanosci. Nanotechno. 6(5) (2006) 1339-1345.

DOI: 10.1166/jnn.2006.301

Google Scholar

[9] J.P. Huo, H.H. Song and X.H. Chen, Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene, Carbon, 42 (2004) 3177–3182.

DOI: 10.1016/j.carbon.2004.08.007

Google Scholar

[10] Y. Li, H. Wang, G. Wang, and J. Gao, Synthesis of single-walled carbon nanotubes from heavy oil residue, Chem. Eng. J. 211-212 (2012) 255-259.

DOI: 10.1016/j.cej.2012.09.031

Google Scholar

[11] X. Liu, Y. Yang, H. Liu, W. Ji, C. Zhang, and B. Xu, Carbon nanotubes from catalytic pyrolysis of deoiled asphalt, Mater. Lett. 61 (2007) 3916-3919.

DOI: 10.1016/j.matlet.2006.12.057

Google Scholar

[12] C. Quan, A. Li, and N. Gao, Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil, J. Hazard. Mater. 179 (2010) 911-917.

DOI: 10.1016/j.jhazmat.2010.03.092

Google Scholar

[13] P. Ghosh, R.A. Afre, T. Soga, and T. Jimbo, A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil, Mater. Lett. 61 (2007) 3768-3770.

DOI: 10.1016/j.matlet.2006.12.030

Google Scholar

[14] P. Ghosh, T. Soga, R.A. Afre, and T. Jimbo, Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: turpentine oil, J. Alloy. Compd. 462 (2008) 289-293.

DOI: 10.1016/j.jallcom.2007.08.027

Google Scholar

[15] A.B. Suriani, A.A. Azira, S.F. Nik, R. Md. Nor, and M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett. 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[16] A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M. Salina, M.S. Rosmi, J. Rosly, R. Md. Nor, and M. Rusop, Vertically aligned carbon nanotubes synthesized from waste chicken fat, Mater. Lett. 101 (2013), 61-64.

DOI: 10.1016/j.matlet.2013.03.075

Google Scholar

[17] T. Tomie, S. Inoue, M. Kohno, Y. Matsumura, Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram, Diam. Relat. Mater. 19 (2010) 1401-1404.

DOI: 10.1016/j.diamond.2010.08.005

Google Scholar

[18] S. Bai, F. Li, Q.H. Yang, H.K. Cheng and J.B. Bai, Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures, Chem. Phys. Lett. 376 (2003) 83–89.

DOI: 10.1016/s0009-2614(03)00959-x

Google Scholar

[19] T. Charinpanitkul, N. Sano, P. Puengjinda, J. Klanwan, N. Akrapattangkul, and W. Tanthapanichakoon, Naphthalene as an alternative carbon source for pyrolytic synthesis of carbon nanostructures, J. Annal. Appl. Pyrolysis 86 (2009) 386-390.

DOI: 10.1016/j.jaap.2009.08.001

Google Scholar

[20] P. Puengjinda, N. Sano, W. Tanthapanichakoon and T. Charinpanitkul, Selective synthesis of carbon nanotubes and nanocapsules using naphthalene pyrolysis assisted with ferrocene, J. Ind. Eng. Chem. 15(3) (2009) 375-80.

DOI: 10.1016/j.jiec.2008.11.003

Google Scholar

[21] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes, Synthetic Metals 103 (1999) 2555-2558.

DOI: 10.1016/s0379-6779(98)00278-1

Google Scholar

[22] Z. Li, P. Wu, C. Wang, X. Fan , W. Zhang , X. Zhai , C. Zeng, Z. Li, J. Yang, J. Hou, Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources, ACS Nano 5(4) (2011) 3385-3390.

DOI: 10.1021/nn200854p

Google Scholar

[23] Z. Kónya, I. Vesselényi, J. Kiss, A. Farkas, A. Oszkó, I. Kiricsi, XPS study of multiwall carbon nanotube synthesis on Ni-, V-, and Ni, V-ZSM-5 catalysts, Appl. Catal. A 260 (2004) 55-61.

DOI: 10.1016/j.apcata.2003.10.042

Google Scholar