Diode Parameters of Mesa Structural n-Type Nanocrystalline FeSi2/p-Type Si Heterojunctions Prepared by Lift-Off Photolithography

Article Preview

Abstract:

Mesa structural n-type nanocrystalline-FeSi2/p-type Si heterojunctions were successfully fabricated by a lift-off technique combined with a photolithography process. Their current-voltage characteristics were measured at low temperatures range from 300 K down to 60 K. We estimated their diode parameters such as ideality factor, barrier height and series resistance based on the thermionic emission theory and Cheung’s method. From the estimation by the thermionic emission theory, the obtained results show an increase of ideality factor and a decrease of barrier height at low temperatures. The estimation by Cheung’s method shows that the values of ideality factor and barrier height are in agreement with those obtained from the thermionic emission theory. The obtained series resistances from dV/d (lnJ)-J and H(J)-J plots, which are approximately equal to each others, are increased at low temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Izumi, M. Shaban, N. Promros, K. Nomoto, and T. Yoshitake, Near-infrared photodetection of β-FeSi2/Si heterojunction photodiodes at low temperatures, Appl. Phys. Lett. 102 (2013) 032107 -1 - 032107-4.

DOI: 10.1063/1.4789391

Google Scholar

[2] N. Promros, K. Yamashita, S. Izumi, R. Iwasaki, M. Shaban, and T. Yoshitake, Near-Infrared Photodetection of n-Type β-FeSi2/Intrinsic Si/p-Type Si Heterojunctions at Low Temperatures, Jpn. J. Appl. Phys. 51 (2012) 09MF02-1 - 09MF02-4.

DOI: 10.7567/jjap.51.09mf02

Google Scholar

[3] N. Promros, K. Yamashita, R. Iwasaki, and T. Yoshitake, Effects of Hydrogen Passivation on Near-Infrared Photodetection of n-Type β-FeSi2/p-Type Si Heterojunction Photodiodes, Jpn. J. Appl. Phys. 51 (2012) 108006-1 - 108006-2.

DOI: 10.7567/jjap.51.108006

Google Scholar

[4] T. Yoshitake, M. Yatabe, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, Semiconducting nanocrystalline iron disilicide thin films prepared by pulsed-laser ablation, Appl. Phys. Lett. 83 (2003) 3057 - 3059.

DOI: 10.1063/1.1617374

Google Scholar

[5] N. Promros, K. Yamashita, C. Li, K. Kawai, M. Shaban, T. Okajima, and T. Yoshitake, n-Type Nanocrystalline FeSi2/intrinsic Si/p-Type Si Heterojunction Photodiodes Fabricated by Facing-Target Direct-Current Sputtering, Jpn. J. Appl. Phys. 51 (2012).

DOI: 10.7567/jjap.51.021301

Google Scholar

[6] M. Shaban, K. Kawai, N. Promros, and T. Yoshitake, n-Type Nanocrystalline-FeSi2/p-Type Si Heterojunction Photodiodes Prepared at Room Temperature, IEEE Electron Device Lett. 31 (2010) 1428 - 1430.

DOI: 10.1109/led.2010.2078793

Google Scholar

[7] Y. Nakamura, Y. Nagadomi, S-P Cho, N. Tanaka, and M. Ichikawa, Formation of ultrahigh density and ultrasmall coherent β-FeSi2 nanodots on Si (111) substrates using Si and Fe codeposition method, J. Appl. Phys. 100 (2006) 044313-1 - 044313-5.

DOI: 10.1063/1.2266322

Google Scholar

[8] M. G. Grimaldi, C. Bongiorno, C. Spinella, E. Grilli, L. Martinelli, D. B. Migas, Leo Miglio, and M. Fanciulli, Luminescence from β-FeSi2 precipitates in Si. I. Morphology and epitaxial relationship, Phys. Rev. B 66 (2002) 085319-1 - 085319-10.

DOI: 10.1103/physrevb.66.085319

Google Scholar

[9] M. Shaban, H. Kondo, K. Nakashima, and T. Yoshitake, Electrical and Photovoltaic Properties of n-Type Nanocrystalline-FeSi2/p-Type Si Heterojunctions Prepared by Facing-Targets Direct-Current Sputtering at Room Temperature, Jpn. J. Appl. Phys. 47 (2008).

DOI: 10.1143/jjap.47.5420

Google Scholar

[10] N. Promros, L. Chen, and T. Yoshitake, Evaluation of n-Type Nanocrystalline FeSi2/p-Type Si Heterojunctions Prepared by Pulsed Laser Deposition as Near-Infrared Photodetectors, J. Nanosci. Nanotechnol. 13 (2013) 3577 - 3581.

DOI: 10.1166/jnn.2013.7311

Google Scholar

[11] S. Funasaki, N. Promros, R. Iwasaki, M. Takahara, M. Shaban, and T. Yoshitake, Fabrication of mesa structural n-type nanocrystalline-FeSi2/p-type Si heterojunction photodiodes by liftoff technique combined with photolithography, Phys. Status Solidi C 10 (2013).

DOI: 10.1002/pssc.201300346

Google Scholar

[12] N. Promros, R. Iwasaki, S. Funasaki, K. Yamashita, and T. Yoshitake, Characterizations of Mesa Structural Near-Infrared n-Type Nanocrystalline-FeSi2/p-Type Si Heterojunction Photodiodes at Low Temperatures, Adv. Mater. Res. 747 (2013) 217 - 220.

DOI: 10.4028/www.scientific.net/amr.747.217

Google Scholar

[13] N. Promros, R. Iwasaki, S. Funasaki, and T. Yoshitake, Current Transport Mechanism of n-Type Nanocrystalline FeSi2/Intrinsic Si/p-Type Si Heterojunctions Fabricated by Facing-Targets Direct-Current Sputtering, Adv. Mater. Res. 802 (2013).

DOI: 10.4028/www.scientific.net/amr.802.199

Google Scholar

[14] A. M. Rodrigues, Extraction of Schottky diode parameters from current-voltage data for a chemical-vapor-deposited diamond/silicon structure over a wide temperature range, J. Appl. Phys. 103 (2008) 083708-1 - 083708-6.

DOI: 10.1063/1.2908858

Google Scholar

[15] Hoda S. Hafez, I. S. Yahia, G. B. Sakr, M. S. A. Abdel-Mottaleb, and F. Yakuphanoglu, Extraction of the DSSC parameters based TiO2 under dark and illumination conditions, Adv. Mater. Corros. 1 (2012) 8 - 13.

Google Scholar

[16] D. Song, and B. Guo, Electrical properties and carrier transport mechanisms of n-ZnO/SiOx/n-Si isotype heterojunctions with native or thermal oxide interlayers, J. Phys. D: Appl. Phys. 42 (2009) 025103-1 - 025103-8.

DOI: 10.1088/0022-3727/42/2/025103

Google Scholar