Effects of Temperature on I-V Characteristics of InAs/GaAs Quantum-Dot Solar Cells

Article Preview

Abstract:

The current-voltage (I-V) characteristics of quantum-dot (QD) solar cells under illumination at various temperatures are presented. Stacked of high-density self-assembled InAs/GaAs QDs were incorporated into the Schottky-barrier-type solar cell structure. The I-V characteristics reveal that both short-circuit current and open-circuit voltage of the QD solar cell reduce when the measurement temperature increases. This result is unexpected and inconsistent with a basic solar cell theory where the temperature is believed to cause the enhancement of the short-circuit current. By considering the solar-cell circuit model, we can explain the obtained I-V curves by a high series resistance of the cell structure. Theoretical exclusion of the series resistance shows a substantial improvement of solar cell fill factor and efficiency. This work therefore suggests that reduction of series resistance by properly doping of the epitaxial layers can improve these devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-135

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Famer, L. Cuadra, and A. Luque, Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell, Thin Solid Films 511-512 (2006) 638-644.

DOI: 10.1016/j.tsf.2005.12.122

Google Scholar

[2] A. Luque, and A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Physical Review Letters 78 (1997) 5014-5017.

DOI: 10.1103/physrevlett.78.5014

Google Scholar

[3] K. Laouthaiwattana, O. Tangmattajittakul, S. Suraprapapich, S. Thainoi, P. Changmuang, S. Kanjanachuchai, S. Ratanathamaphan, and S. Panyakeow, Optimization of stacking high-density quantum dot molecules for photovoltaic effect, Solar Energy Materials & Solar Cells 93 (2009).

DOI: 10.1016/j.solmat.2008.09.020

Google Scholar

[4] R. Songmuang, S. Kiravittaya, M. Sawadsaringkarn, S. Panyakeow, and O.G. Schmidt, Photoluminescence investigation of low-temperature capped self-assembled InAs/GaAs quantum dots, Journal of Crystal Growth 251 (2003) 166-171.

DOI: 10.1016/s0022-0248(02)02474-0

Google Scholar

[5] J. Phillips, K. Kamath, and P. Bhattacharya, Far-infrared photoconductivity in self-organized InAs quantum dots, Applied Physics Letters 72 (1998) 2020-(2022).

DOI: 10.1063/1.121252

Google Scholar

[6] Y. Osaka, H. Tanabe, K. Yamada, and K. Yamaguchi, Wideband luminescence of high-density InAs quantum dots on GaAsSb/GaAs layers, Journal of Crystal Growth 378 (2013) 422-425.

DOI: 10.1016/j.jcrysgro.2012.12.042

Google Scholar

[7] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Childs, and R. Murray, Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy, Physical Review B 62 (2000).

DOI: 10.1103/physrevb.62.10891

Google Scholar

[8] S. Ruangdet, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, Improvement of PV performance by using multi-stacked high density InAs quantum dot molecules, in: Proceedings of the 4th WCPEC, Hawaii, USA, (2006).

DOI: 10.1109/wcpec.2006.279430

Google Scholar

[9] A. Hospodková, J. Pangrác, M. Zíková, J. Oswald, J. Vyskočil, P. Komninou, J. Kioseoglou, N. Florini, and E. Hulicius, Effect of the lower and upper interfaces on the quality of InAs/GaAs quantum dots, Applied Surface Science 301 (2014) 173-177.

DOI: 10.1016/j.apsusc.2014.02.033

Google Scholar

[10] M. Berginc, U. O. Krašovec, M. Jankovec, and M. Topič, The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte, Solar Energy Materials & Solar Cells 91 (2007) 821–828.

DOI: 10.1016/j.solmat.2007.02.001

Google Scholar

[11] P. Kumar, S. C. Jain, H. Kumar, S. Chand, and V. Kumar, Effect of illumination intensity and temperature on open circuit voltage in organic solar cells, Applied Physics Letters 94 (2009) 183505.

DOI: 10.1063/1.3129194

Google Scholar

[12] G. Kumar, and A. K. Panchal, A non-iterative technique for determination of solar cell parameters from the light generated I-V characteristic, Journal of Applied Physics 114 (2013) 084904.

DOI: 10.1063/1.4819961

Google Scholar

[13] E. E. van Dyk, and E. L. Meyer, Analysis of the effect of parasitic resistances on the performance of photovoltaic modules, Renewable Energy 29 (2004) 333-344.

DOI: 10.1016/s0960-1481(03)00250-7

Google Scholar

[14] J. Lindmayer, and J. F. Allison, The violet cell: an improved silicon solar cell, COMSAT Technical Review 3 (1973) 1-22.

Google Scholar

[15] A. D. Dhass, E. Natarajan, and L. Ponnusamy, Influence of shunt resistance on the performance of solar photovoltaic cell, in: Proceeding on the 2012 ICETEEM International Conference, Chennai, India, (2012).

DOI: 10.1109/iceteeem.2012.6494522

Google Scholar

[16] J. Merten, J. M. Asensi, C. Voz, A. V. Shah, R. Platz, and J. Andreu, Improved Equivalent Circuit and Analytical Model for Amorphous Silicon Solar Cells and Modules, IEEE Transactions on Electron Devices 45 (1998) 423-429.

DOI: 10.1109/16.658676

Google Scholar

[17] B. Triphathi, P. Yadav, and M. Kumar, Effect of varying illumination and temperature on steady-state and dynamic parameters of dye-sensitized solar cell using AC impedance modeling, International Journal of Photoenergy 2013 (2013).

DOI: 10.1155/2013/646407

Google Scholar

[18] A. Ortiz-Conde, F. J. Garcia Sanchez, and J. Muci, New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics, Solar Energy Materials & Solar Cells 90 (2006) 352-361.

DOI: 10.1016/j.solmat.2005.04.023

Google Scholar

[19] Y. Chen, X. Wang, D. Li, R. Hong, and H. Shen, Parameter extraction from commercial solar cells I-V characteristics and shunt analysis, Applied Energy 88 (2011) 2239-2244.

DOI: 10.1016/j.apenergy.2010.12.048

Google Scholar

[20] MathWorks, Optimization toolboxTM: R2014a user's guide, The MathWorks, Inc., 3 Apple Hill Drive Natrick, Massachusetts, USA, 2014. [Online].

Google Scholar

[21] E. Radziemska, The Effect of temperature on the power drop in crystalline silicon solar cells, Renewable Energy 28 (2003) 1-12.

DOI: 10.1016/s0960-1481(02)00015-0

Google Scholar

[22] R. Sharma, Temperature dependence of I-V characteristics of Au/n-Si Schottky Barrier Diode, Journal of Electron Devices 8 (2010) 286-292.

Google Scholar