A Development of Graphene Based Chemiresistive Sensor: Demonstrations on pH Sensing, and Cell Detection

Article Preview

Abstract:

Graphene is a single-to-few layer carbon sheet, consisting of carbon atoms hybridizing with one another via sp2 configuration, providing outstanding mechanical, electrical, and electrochemical properties that can be utilized in various applications. In this work, we synthesized graphene powder via a modified Hummers method to obtain electrically insulating graphene oxide (GO), and converted the GO to semiconducting reduced graphene oxide (rGO) using L-ascorbic acid as a reducing agent. The rGO was re-dispersed in DI water and cast on prefabricated electrodes to create an rGO film chemiresistive sensor.The rGO sensor was shown to detect changes in buffer pH and cell concentrations of three different cells: human breast cancer cells (MDA-MB-231); non-small-cell lung cancer cells (A549); and fibroblast cells (L929). Sensor performances were determined in terms of "sensitivity", ratio of normalized resistance change upon exposure to a certain analyte concentration, and the analyte concentration. Our studies serve as strong evidence that the rGO-based chemiresistive sensor can be used for a quick and easy test in indicating buffer pH, or quantifying concentrations of a known cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-143

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.U. Jung, S.I. Oh, S.H. Choa, H.K. Kim, S.J. Kang, Electromechanical properties of graphene transparent conducting films for flexible electronics, Current Applied Physics, 13(2013) 1331-4.

DOI: 10.1016/j.cap.2013.04.017

Google Scholar

[2] K. Chen, G. Lu, J. Chang, S. Mao, K. Yu, S. Cui, J. Chen, Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles, Analytical Chemistry, 84(2012) 4057-62.

DOI: 10.1021/ac3000336

Google Scholar

[3] Y. Huang, X. Dong, Y. Liu, L.J. Li, P. Chen, Graphene-based biosensors for detection of bacteria and their metabolic activities, Journal of Materials Chemistry, 21(2011) 12358-62.

DOI: 10.1039/c1jm11436k

Google Scholar

[4] I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, S. Smirnov, Large scale atmospheric pressure chemical vapor deposition of graphene, Carbon, 54(2013) 58-67.

DOI: 10.1016/j.carbon.2012.11.003

Google Scholar

[5] R.K. Paul, S. Badhulika, S. Niyogi, R.C. Haddon, V.M. Boddu, C. Costales-Nieves, K. Bozhilov, A. Mulchandani, The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition, Carbon, 49(2011) 3789-95.

DOI: 10.1016/j.carbon.2011.04.070

Google Scholar

[6] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotechnology, 4(2010) 217-24.

Google Scholar

[7] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46(2010) 1112-4.

DOI: 10.1039/b917705a

Google Scholar

[8] J. Geng, B.S. Kong, S.B. Yang, H.T. Jung, Preparation of graphene relying on porphyrin exfoliation of graphite, Chemical Communications, 46(2010) 5091-3.

DOI: 10.1039/c001609h

Google Scholar

[9] H. Bai, C. Wang, J. Chen, J. Peng, Q. Cao, A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination, Biosensors and Bioelectronics, 64(2015).

DOI: 10.1016/j.bios.2014.09.034

Google Scholar

[10] N.S. Ismail, Q.H. Le, H. Yoshikawa, M. Saito, E. Tamiya, Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon-gold nanoparticle hybrid, Electrochimica Acta, 146(2014) 98-105.

DOI: 10.1016/j.electacta.2014.08.123

Google Scholar

[11] L. Sansone, V. Malachovska, P.L. Manna, P. Musto, A. Borriello, G.D. Luca, M. Giordano, Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics, Sensors and Actuators B: Chemical, 202(2014).

DOI: 10.1016/j.snb.2014.05.067

Google Scholar

[12] S. Spanò, G. Isgrò, P. Russo, M. Fragalà, G. Compagnini, Tunable properties of graphene oxide reduced by laser irradiation. Applied Physics A, 117(2014) 19-23.

DOI: 10.1007/s00339-014-8508-y

Google Scholar

[13] L. Nan, L. Pengfei, X. Wei, X. Jie, Simple graphene chemiresistors as pH sensors: fabrication and characterization, Measurement science and technology, (2011) 107002-7.

DOI: 10.1088/0957-0233/22/10/107002

Google Scholar

[14] P.K. Ang, W. Chen, A. Wee, K.P. Loh, Solution-gated epitaxial graphene as pH sensor, Journal of the American Chemical Society, (2008) 14392–3.

DOI: 10.1021/ja805090z

Google Scholar

[15] D. Jung, M.E. Han, G.S. Lee, pH-sensing characteristics of multi-walled carbonnanotube sheet. Materials Letters, 116(2014) 57-60.

DOI: 10.1016/j.matlet.2013.10.095

Google Scholar

[16] K. Priscilla, J. Li, W. Yu, W. Han, T.L. John, T. Chwee, P. Kian, Flow Sensing of Single Cell by Graphene Transistor in a Microfluidic Channel, Nano letters (2011) 5240-46.

Google Scholar

[17] C. García-Aljaro, L.N. Cella, D.J. Shirale, M. Park, F.J. Muñoz, M.V. Yates, A. Mulchandani, Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms, Biosensors and Bioelectronics, 26(2010) 1437-41.

DOI: 10.1016/j.bios.2010.07.077

Google Scholar

[18] C. García-Aljaro, M.A. Bangar, E. Baldrich, F.J. Muñoz, A. Mulchandani, Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores, Biosensors and Bioelectronics, 25(2010) 2309-12.

DOI: 10.1016/j.bios.2010.03.021

Google Scholar

[19] Y. Huang, X. Dong, Y. Liu, L.J. Li, P. Chen, Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry, 21(2011) 12358-12362.

DOI: 10.1039/c1jm11436k

Google Scholar