[1]
Handbook of materials for medical devices, ed. J.R. Davies, ASM International (2003).
Google Scholar
[2]
Metals for biomedical devices, ed. M. Niinomi, Woodhead Publishing in Materials, Cambridge (2010).
Google Scholar
[3]
G. Adamek, M.U. Jurczyk and J. Jakubowicz, Biocompatibility of the electrochemically modified surface of the Ti-6Zr-4Nb alloy, J. Biomat. Tissue Eng., 2011, 1, 101–109.
DOI: 10.1166/jbt.2011.1009
Google Scholar
[4]
C.E. Wen, M. Mabuchi, M. Yamada, K. Shimojima, Y. Chino and T. Asahina, Processing of biomedical porous foam of Ti and Mg, Scr. Mat., 2001, 45, 1147–1153.
DOI: 10.1016/s1359-6462(01)01132-0
Google Scholar
[5]
I. -H. Kim, W. Lee, S. -H. Ko and J.M. Jang, Compression temperature and binder ratio on a process for fabrication of open-celled porous Ti, Mat. Res. Bull., 2010, 45, 355–358.
DOI: 10.1016/j.materresbull.2009.12.002
Google Scholar
[6]
S. Bose, M. Roy and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechn., 2012, 30, 546–554.
DOI: 10.1016/j.tibtech.2012.07.005
Google Scholar
[7]
J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison and A.J. Wagoner Johnson, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials, 2007, 28, 45–54.
DOI: 10.1016/j.biomaterials.2006.08.021
Google Scholar
[8]
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progr. Mat. Sci., 2001, 46, 559–639.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[9]
Z. Esen and S. Bor, Characterization of Ti–6Al–4V alloy foams synthesized by space holder technique, Mat. Sci. Eng. A, 2011, 528, 3200–3209.
DOI: 10.1016/j.msea.2011.01.008
Google Scholar
[10]
J.P. Li, J.R. de Wijn, C.A. van Blitterswijk and K. de Groot, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment, Biomaterials, 2006, 27, 1223–1235.
DOI: 10.1016/j.biomaterials.2005.08.033
Google Scholar
[11]
J. Jakubowicz, G. Adamek and M. Dewidar, Titanium foam made with saccharose as a space holder, J. Porous Mat., 2013, 20, 1137–1141.
DOI: 10.1007/s10934-013-9696-0
Google Scholar
[12]
G. Adamek, M. Dewidar and J. Jakubowicz, Saccharose particles as a space holder for Ti-void composite preparation, Adv. Mat. Res., 2014, 894, 3–7.
DOI: 10.4028/www.scientific.net/amr.894.3
Google Scholar
[13]
G. Adamek, D. Andrzejewski and J. Jakubowicz, Sugar crystals as a space holder material for Ti void metal composites, J. Biomat. Tissue Eng., 2014, 4, 300–307.
DOI: 10.1166/jbt.2014.1174
Google Scholar
[14]
K. Gross, C. Chai, G. Kannangara, B. Ben-Nissan and L. Hanley, Thin hydroxyapatite coatings via sol–gel synthesis, J. Mat. Sci.: Mat. in Medicine, 1998, 9, 839–843.
DOI: 10.1023/a:1008948228880
Google Scholar
[15]
J. Jakubowicz and G. Adamek, Electrochemical deposition of the Ca-P coatings on the porous nanocrystalline Ti-6Al-4V alloy, Sol. State Phenom., 2012, 183, 1-8.
DOI: 10.4028/www.scientific.net/ssp.183.1
Google Scholar
[16]
V. Guipont, M. Espanol, F. Borit, N. Llorca-Isern, M. Jeandin, K.A. Khor and P. Cheang, High-pressure plasma spraying of hydroxyapatite powders, Mat. Sci. Eng. A, 2002, 325, 9–18.
DOI: 10.1016/s0921-5093(01)01414-9
Google Scholar
[17]
G. Ciobanu, G. Carja, O. Ciobanu, I. Sandu and A. Sandu, SEM and EDX studies of bioactive hydroxyapatite coatings on titanium implants, Micron, 2009, 40, 143–146.
DOI: 10.1016/j.micron.2007.11.011
Google Scholar
[18]
A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti and L. Sturba, Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method, Biomaterials, 2005, 26, 4085–4089.
DOI: 10.1016/j.biomaterials.2004.10.034
Google Scholar
[19]
Z. Esen and S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Mater., 2007, 56, 341–344.
DOI: 10.1016/j.scriptamat.2006.11.010
Google Scholar
[20]
A. Mansourighasri, N. Muhamad and A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mat. Proc. Techn. 2012, 212, 83–89.
DOI: 10.1016/j.jmatprotec.2011.08.008
Google Scholar
[21]
Y. Quan, F. Zhang,H. Rebl, B. Nebe, O. Keßler and E. Burkel, Ti6Al4V foams fabricated by spark plasma sintering with post-heat treatment, Mat. Sci. Eng. A, 2013, 565, 118–125.
DOI: 10.1016/j.msea.2012.12.026
Google Scholar