Properties of the Ti Void Metal Composites Prepared with Saccharose as a Space Holder and Coated by Hydroxyapatite

Abstract:

Article Preview

In this paper hydroxyapatite biomimetic deposition on Ti void metal composites (Ti-VMC) have been shown. The Ti-VMC were prepared using saccharose (sugar crystals) as a space holder material that forms voids around the Ti scaffold. The Ti (100 and 325 mesh) with sugar (about 0.7−0.9 mm) particles were mixed together with different Ti/sugar ratio and uniaxially pressed. Then the sugar particles were dissolved in water, leaving mechanically bonded Ti particles, forming a metal scaffold. The titanium scaffolds were sintered at 1300°C, which lead to formation the Ti-VMC with voids of diameter of up to 0.9 mm. Because different Ti/saccharose ratio was applied, the Ti-VMC have been made with 50, 60 and 70% porosity. On the as-prepared Ti-VMC the hydroxyapatite (HA) was deposited using mineralisation procedure in Kokubo SBF (simulated body fluid). The Ti-VMC were kept in SBF for time from 7 up to 28 days. Finally the scaffolds were covered by layer of HA showing good corrosion resistance. The mechanical tests show, that most optimal property for implant applications have samples of 50% porosity, made from 100 mesh Ti. The scaffold of 50% porosity states a good background for implant applications.

Info:

Periodical:

Edited by:

Hao Gong and K.M. Gupta

Pages:

13-20

Citation:

G. Adamek et al., "Properties of the Ti Void Metal Composites Prepared with Saccharose as a Space Holder and Coated by Hydroxyapatite", Advanced Materials Research, Vol. 1105, pp. 13-20, 2015

Online since:

May 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] Handbook of materials for medical devices, ed. J.R. Davies, ASM International (2003).

[2] Metals for biomedical devices, ed. M. Niinomi, Woodhead Publishing in Materials, Cambridge (2010).

[3] G. Adamek, M.U. Jurczyk and J. Jakubowicz, Biocompatibility of the electrochemically modified surface of the Ti-6Zr-4Nb alloy, J. Biomat. Tissue Eng., 2011, 1, 101–109.

DOI: https://doi.org/10.1166/jbt.2011.1009

[4] C.E. Wen, M. Mabuchi, M. Yamada, K. Shimojima, Y. Chino and T. Asahina, Processing of biomedical porous foam of Ti and Mg, Scr. Mat., 2001, 45, 1147–1153.

DOI: https://doi.org/10.1016/s1359-6462(01)01132-0

[5] I. -H. Kim, W. Lee, S. -H. Ko and J.M. Jang, Compression temperature and binder ratio on a process for fabrication of open-celled porous Ti, Mat. Res. Bull., 2010, 45, 355–358.

DOI: https://doi.org/10.1016/j.materresbull.2009.12.002

[6] S. Bose, M. Roy and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechn., 2012, 30, 546–554.

DOI: https://doi.org/10.1016/j.tibtech.2012.07.005

[7] J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison and A.J. Wagoner Johnson, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials, 2007, 28, 45–54.

DOI: https://doi.org/10.1016/j.biomaterials.2006.08.021

[8] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progr. Mat. Sci., 2001, 46, 559–639.

[9] Z. Esen and S. Bor, Characterization of Ti–6Al–4V alloy foams synthesized by space holder technique, Mat. Sci. Eng. A, 2011, 528, 3200–3209.

DOI: https://doi.org/10.1016/j.msea.2011.01.008

[10] J.P. Li, J.R. de Wijn, C.A. van Blitterswijk and K. de Groot, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment, Biomaterials, 2006, 27, 1223–1235.

DOI: https://doi.org/10.1016/j.biomaterials.2005.08.033

[11] J. Jakubowicz, G. Adamek and M. Dewidar, Titanium foam made with saccharose as a space holder, J. Porous Mat., 2013, 20, 1137–1141.

DOI: https://doi.org/10.1007/s10934-013-9696-0

[12] G. Adamek, M. Dewidar and J. Jakubowicz, Saccharose particles as a space holder for Ti-void composite preparation, Adv. Mat. Res., 2014, 894, 3–7.

DOI: https://doi.org/10.4028/www.scientific.net/amr.894.3

[13] G. Adamek, D. Andrzejewski and J. Jakubowicz, Sugar crystals as a space holder material for Ti void metal composites, J. Biomat. Tissue Eng., 2014, 4, 300–307.

DOI: https://doi.org/10.1166/jbt.2014.1174

[14] K. Gross, C. Chai, G. Kannangara, B. Ben-Nissan and L. Hanley, Thin hydroxyapatite coatings via sol–gel synthesis, J. Mat. Sci.: Mat. in Medicine, 1998, 9, 839–843.

DOI: https://doi.org/10.1023/a:1008948228880

[15] J. Jakubowicz and G. Adamek, Electrochemical deposition of the Ca-P coatings on the porous nanocrystalline Ti-6Al-4V alloy, Sol. State Phenom., 2012, 183, 1-8.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.183.1

[16] V. Guipont, M. Espanol, F. Borit, N. Llorca-Isern, M. Jeandin, K.A. Khor and P. Cheang, High-pressure plasma spraying of hydroxyapatite powders, Mat. Sci. Eng. A, 2002, 325, 9–18.

DOI: https://doi.org/10.1016/s0921-5093(01)01414-9

[17] G. Ciobanu, G. Carja, O. Ciobanu, I. Sandu and A. Sandu, SEM and EDX studies of bioactive hydroxyapatite coatings on titanium implants, Micron, 2009, 40, 143–146.

DOI: https://doi.org/10.1016/j.micron.2007.11.011

[18] A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti and L. Sturba, Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method, Biomaterials, 2005, 26, 4085–4089.

DOI: https://doi.org/10.1016/j.biomaterials.2004.10.034

[19] Z. Esen and S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Mater., 2007, 56, 341–344.

DOI: https://doi.org/10.1016/j.scriptamat.2006.11.010

[20] A. Mansourighasri, N. Muhamad and A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mat. Proc. Techn. 2012, 212, 83–89.

DOI: https://doi.org/10.1016/j.jmatprotec.2011.08.008

[21] Y. Quan, F. Zhang,H. Rebl, B. Nebe, O. Keßler and E. Burkel, Ti6Al4V foams fabricated by spark plasma sintering with post-heat treatment, Mat. Sci. Eng. A, 2013, 565, 118–125.

DOI: https://doi.org/10.1016/j.msea.2012.12.026

Fetching data from Crossref.
This may take some time to load.