Effect of Bentonite and Zinc Borate (ZB) Addition on Recycled Polypropylene Composites against Tensile and Burning Rate Properties

Article Preview

Abstract:

Has successfully created an optimum composite of rPP/DVB/PP-AA/comBen+ZB based on the mechanical and fuel resistance properties. The starting material recycled PP (rPP), PP modified acrylic acid (AA) as coupling agent (PP-AA), crosslinker divinylbenzene (DVB), 20 phr of commercial bentonite (comBen) and 5 phr of zinc borate (ZB), was reactivelly processed in xylene. Composites analysis using XRD presented that the bentonite had been exfoliated inside of PP matrix. Test results showed that both of tensile strength (TS) and young's modulus (YM) of rPP/DVB/PP-AA/comBen+ZB composites following ASTM D638 was increased. The testing results of burning rate (BR) of composite rPP/DVB/PP-AA/comBen+ZB according to ASTM D635 decreased. The presence of bentonite as a natural fire retardant and ZB as fire retardant additive on composite rPP/DVB/PP-AA/comBen+ZB able to increase mechanical properties and also improving the flammability resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.S. Suharty, I.P. Almanar, Sudirman, K. Dihardjo, N. Astasari. Flammability, Biodegradability dan Mechanical Properties of Bio-Composites Waste Polypropilene /Kenaf Fiber Containing Nano CaCO3 with Diammonium Phosphate, Procedia Chemistry, 4, (2012).

DOI: 10.1016/j.proche.2012.06.039

Google Scholar

[2] M. Sarkar, K. Dana, S. Ghatak, and A. Banerjee. Polypropylene-Clay Composite Prepared from Indian Bentonite, B. Mater. Sci., 31(1), (2008) 23-28.

DOI: 10.1007/s12034-008-0005-5

Google Scholar

[3] N.S. Suharty, B. Wirjosentono, M. Firdaus, D.S. Handayani, J. Sholikhah, Y.A. Maharani. Synthesis of degradable bio-composites based on recycle polypropylene filled with bamboo powder using a reactive process, J. Phys. Sci., 19, (2008) 105–115.

Google Scholar

[4] M. Sain, J. Balatinecz, S. Law. Creep fatigue in engineered wood fibres and plastic compositions. J Appl. Polym. Sci., 77, (2000) 260.

DOI: 10.1002/(sici)1097-4628(20000711)77:2<260::aid-app3>3.0.co;2-h

Google Scholar

[5] A.K. Bledzki, A.A. Mamun, O. Faruk. Abaca Fibre Reinforced PP Composites and Comparison with Jute and Flax Fibre PP Composites. eXPRESS Polymer Letter, 1(11), (2007) 755-762.

DOI: 10.3144/expresspolymlett.2007.104

Google Scholar

[6] G.S. Olivares, A.S. Solis, and O. Manero. Burning Rate, Mechanical and Rheological Properties of HIPS-PET and Clay Nanocomposites. Int. J. Polym. Mater., 57, (2008) 417-428.

DOI: 10.1080/00914030701729180

Google Scholar

[7] M. Sain, S.H. Park, F. Suhara, S. Law. Flame retardant and mechanical properties of natural fiber–PP composites containing magnesium hydroxide, Poly. Deg. and Stab. 83: (2004) 363–367.

DOI: 10.1016/s0141-3910(03)00280-5

Google Scholar

[8] H.S. Yang, H.J. Kim, H.J. Park, B.J. Lee, T.S. Hwang. Effect of compatibilizing agents on rice-husk flour reinforced polypropylenecomposites. Compos. Struct., 77, (2007) 45–55.

DOI: 10.1016/j.compstruct.2005.06.005

Google Scholar

[9] E. Moncada, R. Quijada, I. Lieberwirth, and M. Yazdani-Pedram. Use of PP Grafted with Itaconic Acid as a New Compatibilizer for PP/Clay Nanocomposites. Macromol. Chem. Physic, 207, (2006) 1376–1386.

DOI: 10.1002/macp.200600150

Google Scholar

[10] P.K. Patra, S.B. Warner, Y.K. Kim, Q. Fan, P.D. Calvert, S. Adanur. Nano Engineered Fire Resistant Composite Fibre, NTC Annual Report. No: M02-MD08, (2005) 1-10.

Google Scholar

[11] G. Tesoro, Chemical Modification of Polymers with Flame-Retardant Compounds. J. Polym. Sci. Macromol. Rev., 13, (1978) 283-353.

DOI: 10.1002/pol.1978.230130106

Google Scholar

[12] Z. Al Hassany, A. Genovese, R.A. Shanks. Fire Retardant and Fire-barrier Poly(vinyl acetate) Composites for Sealant Application. Journal of Polymer Letters, 4, (2010) 70-93.

DOI: 10.3144/expresspolymlett.2010.13

Google Scholar

[13] P. Pasbakhsh, H. Ismail, M.N. Ahmad Fauzi and A. Abu Bakar. Influence of Maleic Anhydride Grafted Ethylene Propylene Diene Monomer (MAH-g-EPDM) on the Properties of EPDM Nanocomposites Reinforced by Halloysite Nanotubes. Polym. Test, 28, (2009).

DOI: 10.1016/j.polymertesting.2009.04.004

Google Scholar

[14] N.S. Suharty, I. Hanafi, K. Diharjo, M. Nizam, M. Firdaus. Improvement of Inflam-mability and Biodegradability of Bio-composites Using Recycled Polypropylene with Kenaf Fiber Containing Mixture Fire Retardant, Advanced Materials Research Journal, 950, (2014).

DOI: 10.4028/www.scientific.net/amr.950.18

Google Scholar

[15] B.R. Ilic, A.A. Mitrovic and L.R. Ljiljana. Thermal Treatment of Kaolin Clay to Obtain Metakaolin. Hem. Ind., 64(4), (2010) 351-356.

DOI: 10.2298/hemind100322014i

Google Scholar

[16] J. Pascual, E. Fages, O. Fenollar, D. García, and R. Balart. Influence of The Compatibilizer/Nanoclay Ratio On Final Properties of Polypropylene Matrix Modified with Montmorillonite-Based Organoclay. Polym. Bull. No. 62, (2008) 367-380.

DOI: 10.1007/s00289-008-0018-7

Google Scholar

[17] T.P. Mohan, M.R. Kumar, R. Velmurugan. Mechanical and Barrier Properties of Epoxy Polymer Filled with Nanolayered Silicate Clay Particles, J. Mater. Sci., 41, (2006) 2929-2937.

DOI: 10.1007/s10853-006-5164-4

Google Scholar

[18] Kusmono, Z.A.M. Ishak, W.S. Chow, T. Takaechi and Rochmadi. Enhancement of Properties of PA6/PP Nanocomposites Via Organic Modification and Compatibilization, eXPRESS Polymer Letter, 2 (9), (2008) 655-664.

DOI: 10.3144/expresspolymlett.2008.78

Google Scholar

[19] M.A. HaiYun, S. PingAn and F. ZhengPing. Flame Retardant Polymer Nano- composites: Development, Trend and Future Perspective. Sci. China. Chem. 41(2), (2011) 314-327.

Google Scholar