Influence of Grain Size on the Thermal Diffusivity of Pt-SnO2 Ceramic

Article Preview

Abstract:

Pt-SnO2 ceramics were prepared via solid-state route from a mixture of powders of (100-x) SnO2.x Pt (0≤ x wt %≤ 1). The samples were then sintered at 600, 800 and 1000 °C for 3 hours. The resulting samples were then characterized using Laser Flash Apparatus (LFA) for determining thermal diffusivity (α ) value. The measurements of α were carried out at room temperature up to 400 °C with the intervals of 50 °C. Experimental results showed that thermal diffusivity value is in the range of 5.0×10-7m2s-1 - 3.0×10-6m2s-1. We also show that larger grain size increases the thermal diffusivity of the ceramic. Data concerning the effects of additive amount, pore content, and temperature were also reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.P. Incropera, D.P. Dewitt T.L. Bergman and A.S. Lavine, Fundamentals of heat and mass transfer, (6th ed. ). Asia: John Wiley & Sons, (2007).

Google Scholar

[2] M. Shafiei, K. Kalantar-zadeh, W. Wlodarski, E. Comini, M. Ferroni, G. Sberveglieri, S. Kaciulis and L. Pandolfi, Hydrogen gas sensing performance of Pt/SnO2 Nanowires/SiC MOS devices, Int. J. On Smart Sensing and Intelligent Systems Vol. 1, 3(2008).

DOI: 10.21307/ijssis-2017-319

Google Scholar

[3] M.M. Aiza, A.W. Zaidan, M.Y. Wan Mahmood, A.M. Khamirul and M.A. Rabiatul Adawiyah, Thermal conductivity of Pt-SnO2 gas sensor, J. of Sol. St. Sci. and Tech. Lett. 18(2011)21-28.

Google Scholar

[4] W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbot, Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J. of Appl. Phys. 32 (1961) 1679-1684.

DOI: 10.1063/1.1728417

Google Scholar

[5] E.H. Norfarezah, Z. Syaharudin, M. M. Aiza, M. Y. Thai, A. W. Zaidan, K. A. Matori, M. M. Maarof and M. M. Z. Hilmi. Thermal diffusivity measurement of soda lime silica (SLS)-coal fly ash (CFA) ceramics, J. of Sol. St. Sci. and Tech. Lett. 16, No. 1(2009).

Google Scholar

[6] J.A. Varela, J.A. Cerri, E.R. Leite, E. Longo,M. Shamsuzzoha and R.C. Braadt, Microstructure revolution during sintering of CeO doped SnO2 ceramics, Ceram. Int. 25(1999) 253-256.

DOI: 10.1016/s0272-8842(98)00032-7

Google Scholar

[7] R. Botter, T. Aste and D. Beruto, Influence of microstructures on the functional properties of tin oxide-based gas sensors. Sens. and Act. B 22(1994) 27-35.

DOI: 10.1016/0925-4005(94)01257-1

Google Scholar

[8] S.D. Choi, and D.D. Lee, CH4 sensing characteristics of K-, Ca-, Mg impregnated SnO2 sensors, Sens. and Act. B. 77(2001) 335-338.

DOI: 10.1016/s0925-4005(01)00727-4

Google Scholar

[9] S.W. Lee, P.P. Tsai and H. Chen, Comparison study of SnO2 thin and thick film gas sensors. Sens. and Act. B. 67(2000) 122-127.

DOI: 10.1016/s0925-4005(00)00390-7

Google Scholar

[10] Z.G. Liu, J.H. Ouyang, B.H. Wang, Y. Zhou and J. Li, Thermal expansion and thermal conductivity of SmxZr1-xO2-x/2(0. 1≤x≤0. 5) ceramics, Ceram. Int. 35(2009)791-796.

DOI: 10.1016/j.ceramint.2008.02.016

Google Scholar