Structural and Luminescence Properties of Eu3+ and Dy3+ Doped Magnesium Tellurite Borophosphate Ceramic

Article Preview

Abstract:

Lately, researchers have been considering the miscellaneous in the borophosphate crystalline’s luminescence as one of the important properties in hunt of the new functional material. In this study we discus the structural and luminescence properties of Eu3+/Dy3+ co-doped borophosphate ceramic. A series of ceramic samples based on B2O3-(65-)P2O5-25MgO-10TeO2 where (065) mol has successfully been prepared using solid state reaction method and sintered at 900°C. The crystalline phase of the powder samples was characterized using X-ray diffraction pattern. The diffraction patterns analysis indicated that the prepared samples were polycrystalline phase of B(PO4), Mg(PO3)2and Mg(BO3)(PO4). The local structure network structure has been investigated using Infrared Spectroscopy using KBr method. The FT-Infrared spectra reveal the presence of B-O-B vibrations, BO3 and BO4 bridging oxygen and P-O stretching modes of P-O-P, P=O and PO4 unit in the ceramics sample. Meanwhile, the luminescence properties of doped sample were measured based on analysis of emission spectra of photoluminescence spectroscopy. The emission peaks of Eu3+ doped sample were located at 593 nm, 613 nm, 652 nm, 685 nm due to the assigned transition 5D0-7FJ ( J = 1, 2, 3, 4 ). The Dy3+ emission is due to 4F9/2 -5H15/2 and 4F9/2-6H13/2 transition. For Eu3+/Dy3+ co-doped sample consists of peaks belonging to the 4F9/2-6H15/2 (482 nm) and 4F9/2-6H13/2 (573 nm) transition while red emission 5D0-7F2 transitions appears at 611 nm. Improvement in the optical properties due to co-doping may be useful to discover a new highly efficient luminescent material that are very useful in optical devices and solid-state lighting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Kerkouri, M. Haddad, M. Et-Tabirou, A. Chahine, L. Laanab. FTIR, Raman, EPR and optical absorption spectral studies on V2O5-dopedcadmium phosphate glasses. Physica B406 (2011) 3142-3148.

DOI: 10.1016/j.physb.2011.04.057

Google Scholar

[2] Y. M. Lai, X. F. Liang, S. Y. Yang, J. X. Wang, L. H. Cao, B. Dai. Raman and FTIR spectra of iron phosphate glasses containing cerium. Journal of Molecule Structure 992 (2011)84-88.

DOI: 10.1016/j.molstruc.2011.02.049

Google Scholar

[3] K. Srinivasulu, I. Omkaram, H. Obeid, A.S. Kumar,J. L. Rao. Structural and magnetic properties of Gd3+ ions in sodium-lead borophosphate glasses. Journal of Molecular Structure 1036 (2013)63-70.

DOI: 10.1016/j.molstruc.2012.09.041

Google Scholar

[4] F.H. Elbatal, S. Ibrahim, A. M. Abdelghany. Optical and FITR spectra of NdF3-doped borophosphate glasses and effect of gamma irradiation. Journal of Molecular Structure (2012) 107-112.

DOI: 10.1016/j.molstruc.2012.02.049

Google Scholar

[5] S. Rada, M. Culea, E. Culea. Structure of TeO2. B2O3 glasses infrared from infrared spectroscopy and DFT calculation. Journal Non Crystalline Solid (2008) 5491-5495.

DOI: 10.1016/j.jnoncrysol.2008.09.009

Google Scholar

[6] G. R. Dillip,K. Mallikarjuna S.J. Dhoble,B. Dewa PrasadRaju. The luminescence and structural characteristics of Eu3+-doped NaSrB5O9 phosphor. Journal of Physics and Chemistry of Solids 75(2014)8–14.

DOI: 10.1016/j.jpcs.2013.07.008

Google Scholar

[7] P. Pascutaa, S. Radaa, G. Borodi, M. Boscaa, L. Popa, E, Culeaa. Influence of europium ions on structure and crystallization properties of bismuth-alumino-borate glasses and glass ceramics. Journal of Molecular Structure 924–926 (2009) 214–220.

DOI: 10.1016/j.molstruc.2009.01.003

Google Scholar

[8] S. Rada, P. Pascuta, M. Culea. The local structure of europium–lead-borate glass ceramics. Journal Non Crystalline Solid (2009) 89-92.

DOI: 10.1016/j.molstruc.2008.12.032

Google Scholar

[9] A M. Babu, B. C. Jamalaiah, T. Suhasini, R. T. Srinivasa, R.L. Moorthy. Optical properties of Eu3+ ions in lead tungstate tellurite glasses. Solid State Science 13 (2011) 574-578.

DOI: 10.1016/j.solidstatesciences.2010.12.028

Google Scholar

[10] F. Kang, Y. Hu, L. Cheng, X. Wang, Z. Mu, H. Wu. Eu3+ doped CAWO4-A potential red long afterglow phosphor. Applied Physics B 107(2012) 833-837.

DOI: 10.1007/s00340-012-4957-1

Google Scholar

[11] K. R. Vernasevana, S. Sailaja,C. R. Nageswara,B. R. Sudhakar. Synthesis, the effect of rare earth ion concentration and temperature on luminescence properties of Eu3+: Ba3Y2WO9 ceramics. Journal of Luminescence 131 (2013) 1438-1442.

DOI: 10.1016/j.jlumin.2011.03.027

Google Scholar

[12] V. R. Bandi, B. K. Grandhe, H. Woo, K. Jang, D. Shin, S. Yi, J. Jeong. Luminescence and energy transfer of Eu3+ or/and Dy3+ co-doped in Sr3AlO4Fphosphors with NUV excitation for WLEDs. Journal Alloy and Compounds 538(2012)85-90.

DOI: 10.1016/j.jallcom.2012.05.057

Google Scholar

[13] K. Lingana, C. Srinivasa, C.K. Jayasankar. Optical properties and generation of white light in Dy3+ -doped lead phosphate glasses. Journal of Quantitative Spectroscopy& Radiative Transfer 118 (2013) 40-48.

DOI: 10.1016/j.jqsrt.2012.12.002

Google Scholar

[14] E. Pavitra, R.R.G. Seta, S.Y. Jae. White light emission from Eu3+ co-activated Ca2Gd8Si6O26: Dy3+ nanophosphors by solvothermal synthesis. Ceramic International 39 (2013) 6319-6324.

DOI: 10.1016/j.ceramint.2013.01.057

Google Scholar

[15] L.L. Martin, P. Haro-González, I.R. Martín. Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic. Optical Materials 33 (2011) 738–74.

DOI: 10.1016/j.optmat.2010.11.027

Google Scholar

[16] C.N. Krishna, R. Jayavel. Wet chemical synthesis and characterization of pure and cerium doped Dy2O3 nanoparticles. Journal Physics and Chemistry of Solid73 (2012) 1164-1169.

DOI: 10.1016/j.jpcs.2012.05.009

Google Scholar

[17] D. Subrata, R. A. Amaranth, P.G. Vijaya. Near white light emission from K+ ion compensated CaSO4: Dy3+, Eu3+ phosphors. Ceramics International 38 (2012) 5769-5773.

DOI: 10.1016/j.ceramint.2012.04.023

Google Scholar