Optical Properties of Eu3+-Doped Lithium Tellurite Glass

Article Preview

Abstract:

Improving the optical response of tellurite glasses via controlled doping of rare earth is the key issue in lasing materials. A series of glasses of the form (74.4-x)TeO2(4.3)Li2O(21.3)LiCl (x)Eu2O3 with 0.0 x 2.0 mol% are synthesized using melt-quenching technique and the influence of Eu2O3 content on their UV-Vis absorption properties are examined. The absorption spectra reveal two prominent peaks centered at 464 and 533 nm corresponding to 7F05D2 and 7F15D1 transitions, respectively. The optical band gap energy for direct and indirect transitions are found to be in the range of 3.294-3.173 eV and 3.067-2.971 eV, respectively. The decrease optical band gap energy with the increase of Eu2O3 contents is attributed to the generation of non-bridging oxygen (NBOs). The increase in Urbach energy from 0.226-0.308 eV with the increase of Eu2O3 contents signifies the variation in disorder and compactness of the glass network.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

432-436

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.J. Chen, E.Y.B. Pun, H. Lin, Journal of Alloys and Compounds 479 (2009) 352-356.

Google Scholar

[2] P. Pascuta, S. Rada, G. Borodi, M. Bosca, L. Pop, E. Culea, Journal of Molecular Structure 924-926 (2009) 214-220.

DOI: 10.1016/j.molstruc.2009.01.003

Google Scholar

[3] Z. A. S. Mahraz, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, Journal of Luminescence 144 (2013) 139-145.

DOI: 10.1016/j.jlumin.2013.06.050

Google Scholar

[4] E. A. Ferreira, F. B. Cassanjes, G. Poirier, Optical Materials 35 (2013) 1141-1145.

Google Scholar

[5] W. Stambouli, H. Elhouichet, B. Gelloz, M. Ferid, Journal of Luminescence 138 (2013) 201-208.

Google Scholar

[6] H. Lin, S. Tanabe, L. Lin, D.L. Yang, K. Liu, W.H. Wong, J.Y. Yu, E.Y.B. Pun, Physics Letter A 358 (2006) 474-477.

Google Scholar

[7] T. Som, B. Karmakar, Journal of Physics: Condensed Matter 22 (2010) 035603.

Google Scholar

[8] A. Thulasiramudu, S. Buddhudu, Spectrochimica Acta Part A 66 (2007) 323-328.

Google Scholar

[9] K. Mahesvaran, P. K Veeran, K. Marimuthu, Solid State Sciences 17 (2013) 54-62.

Google Scholar

[10] B. Deva Prasad Raju, C. M. Reddy, Optical Material 34 (2012) 1251-1260.

Google Scholar

[11] T. Som, B. Karmakar, Spectrochimica Acta Part A 79 (2011) 1766-1782.

Google Scholar

[12] A. Dehelean, S. Rada, I. Kacso, E. Culea, Journal of Physics and Chemistry of Solids 74 (2013) 1235-1239.

DOI: 10.1016/j.jpcs.2013.03.022

Google Scholar

[13] K. Mahesvaran, K. Marimuthu, Journal of Luminescence 132 (2012) 2259-2267.

Google Scholar

[14] W. Widanarto, M.R. Sahar, S.K. Ghoshal, R. Arifin, M.R. Rohani, K. Hamzah, Jornal of Magnetism and Magnetic Material 326 (2013) 123-128.

DOI: 10.1016/j.jmmm.2012.08.042

Google Scholar

[15] W. Stambouli, H. Elhouichet, B. Gelloz, M. Ferid, N. Koshida, Journal of Luminescence 132 (2012) 205-209.

DOI: 10.1016/j.jlumin.2011.08.018

Google Scholar

[16] R.S. Gedam, D. D Ramtake, Journal of Rare Earths 30: 8 (2012) 785.

Google Scholar

[17] P.G. Pavani, K. Sandhana, V.C. Mouli, Physica B. 406 (2011) 1242-1247.

Google Scholar

[18] C.R. Kesavulu, K.K. Kumar, N. Vijaya, K.S. Lim, C. K Jayasankar, Material Chemistry and Physics 141 (2013) 903-911.

Google Scholar

[19] S.A. Roslan, M.R. Sahar, R. Arifin, S.K. Ghoshal, M.R. Rohani, K. Hamzah, Advanced Material Research 501 (2012) 96-100.

Google Scholar