Optical Absorption of Erbium Doped Zinc Phosphate Glass Containing Fe3O4 Nanoparticles

Article Preview

Abstract:

Modifying the optical properties of rare earth doped phosphate glasses in a tunable fashion via the embedment of magnetic nanoparticles (NPs) is challenging for magneto-optic devices. Glasses with compositions (69-x)P2O5-30ZnO-1Er2O3-(x)Fe3O4, where x = 0 to 1.5 mol% are prepared by conventional melt quenching method. The Fe3O4 NPs concentration dependent density, molar volume, refractive index and optical properties are determined. Density and molar volume shows strong correlation with structural alteration in the presence of NPs. The XRD spectra confirm the disordered nature of the glass and TEM micrograph display the presence of spherical NPs with average size ~26 nm. The optical band gap and Urbach energy calculated from the room temperature absorption spectra recorded in the range of 350-1700 nm reveal significant improvement. The density and refractive index increases and the molar volume decreases with the increase of Fe3O4 contents. The energy band gap for direct and indirect transitions varies in the range of 4.47-3.64 eV and 4.27-3.53 eV, respectively. The Urbach energy increases from 0.15 to 0.19 eV as the NPs concentration increases from 0 to 1.5 mol%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

420-425

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.F. Khor, Z.A. Thalib, W.M. Mat Yunus. (2012) J. Cer. Inter. 38 : 935 - 940.

Google Scholar

[2] J.W. Wiench, M. Pruski, B. Tischendorf, J.U. Otaigbe, B.C. Sales. (2000). J. Non-Cryst Solids. 26 : 101 - 110.

DOI: 10.1016/s0022-3093(99)00671-7

Google Scholar

[3] Andrea.S. S de Camargo, Idelma A.A. Terra, Luiz. Antonio. De.O. Nunes, M. Siu Li. ( 2008). J. Phy. Cond. Matt. 20 : 255240.

Google Scholar

[4] Dheeraj Jain, V. Sudarsan, R.K. Vatsa, C.G.S. Pillai. (2009) J. Lumin. 129 : 439 - 443.

Google Scholar

[5] W. Widanarto, M.R. Sahar, S.K. Ghoshal, R. Arifin, M.S. Rohani, K. Hamzah. (2013). J. Magn. Magn. Mater. 326 : 123 - 128.

Google Scholar

[6] Ping Hu, Shengen Zhang, Hua Wang, De'an Pan, Jianjun Tian, Zhi Tang, Alex A. Volinsky. (2011) . J. Alloys Compd. 509 : 2316 - 2319.

Google Scholar

[7] M. Reza Dousti, M.R. Sahar, S.K. Ghosal, Raja. J. Amjad, A.R. Samuati. (2013). J. Mol. Struct. 1035 : 6 - 12.

Google Scholar

[8] U.B. Chanshetti, V.A. Shelke, S.M. Jadhav, S.G. Shankarwr. (2011). J. Phys. Chem. Tech. 9 : 29 - 36.

Google Scholar

[9] P.A. Bingham, R.J. Hand, O.M. Hannant, S.S. Forder, S.H. Kilcoyne. (2009). J. Non-Cryst. Solids. 355 : 1526 - 1538.

Google Scholar

[10] S.T. Reis, M. Karabulut, D.E. Day. (2001). J. Non-Cryst. Solids. 292 : 150 - 157.

Google Scholar

[11] V. Licina, A. Mogus, Milankovic, S.T. Reis, D.E. Dax. (2007). J. Non-Cryst. Solids. 353: 4395 - 4399.

Google Scholar

[12] P.Y. Shih. (2004). J. Chem. Phy. 84 : 151 - 156.

Google Scholar

[13] Raja J. Amjad, M.R. Sahar, S.K. Ghosal, M.R. Dousti, S. Riaz, B.A. Tahir. (2012). J. Phys. Lett. 29 : 087304.

Google Scholar

[14] S. Rani, S. Sanghi, A. Agarwal, N. Ahlawat. (2009). J. Alloys. Compd. 477 : 504 - 509.

Google Scholar

[15] Mohd Hafiz Moh Zaid, Khamirul Amin. M, Sidek Hj, Abdul Aziz. (2012). J. Mol. Sci. 13 : 7550 - 7558.

Google Scholar

[16] Che-Zoue Weng, Jia-Hong Chen, Ping-Yu Shih. (2009). J. Mater. Chem. Phys. 115 : 628 - 631.

Google Scholar

[17] M. Altaf, M. Ashraaf Chaundry, Maria Zahid. (2003). J. Res. Sci. 14 : 253 - 259.

Google Scholar

[18] H. El Ghandor, H.M. Zidan, Mostafa M.H. Khalil, M.I.M. Ismail. (2012). Int J. Elect. Sci. 7: 5734 - 5745.

Google Scholar