[1]
J-S. Yang, T. M. Swager, Porous Shape Persistent Fluorescent Polymer Films: An approach to TNT sensory materials, J. Am. Chem. Soc. 120 (1998) 532 –5322.
DOI: 10.1021/ja9742996
Google Scholar
[2]
W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science, 295 (2002) 2425–2427.
DOI: 10.1126/science.1069156
Google Scholar
[3]
M. Haridas, S. Srivastava, J.K. Basu, Tunable variation of optical properties of polymer capped gold nanoparticles, EPJ D, 49 (2008) 93–100.
DOI: 10.1140/epjd/e2008-00135-x
Google Scholar
[4]
K. Takanezawa, K. Tajima, K. Hashimoto, Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer, Appl. Phys. Lett. 93 (2008) 063308 – 063310.
DOI: 10.1063/1.2972113
Google Scholar
[5]
D.C. Olson, Y.J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J.A. Voigt, J.W.P. Hsu, Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices, J. Phys. Chem. C, 111 (2007).
DOI: 10.1021/jp0757816
Google Scholar
[6]
Q. Dong, W. Yu, Z. Li, S. Yao, X. Zhang, B. Yang, C. Im, W. Tian, All-water-solution processed solar cells based on PPV and TiO2 nanocrystals, Sol. Energy Mater. Sol. Cells, 104 (2012) 75–80.
DOI: 10.1016/j.solmat.2012.04.024
Google Scholar
[7]
A.H. Reshak, M.M. Shahimin, N. Juhari, R. Vairavan, Photovoltaic characteristics of hybrid MEH-PPV-nanoparticles compound, Curr. App. Phys. 13 (2013) 1894e1898.
DOI: 10.1016/j.cap.2013.07.023
Google Scholar
[8]
H.J. Lin, S. Vedraine, J. L. Rouzo, S. H. Chen, F. Flory, C. C. Lee, Optical properties of quantum dots layers: Application to photovoltaic solar cells, Sol. Energy Mater. Sol. Cells, 117 (2013) 652–656.
DOI: 10.1016/j.solmat.2012.12.005
Google Scholar
[9]
M. D. Goodman, J. Xu, J. Wang, Z. Lin, Semiconductor conjugated polymer−quantum dot nanocomposites at the air/water interface and their photovoltaic performance, Chem. Mater. 21 (2009) 934–938.
DOI: 10.1021/cm803248j
Google Scholar
[10]
M.T. Khan, A. Kaur, S.K. Dhawan, S. Chand, Hole transport mechanism in organic/inorganic hybrid system based on in-situ grown cadmium telluride nanocrystals in poly(3-hexylthiophene), J. Appl. Phys. 109 (2011) 114509.
DOI: 10.1063/1.3594647
Google Scholar
[11]
P. K. Singh, S. K. Tomar, B. Bhattacharya, PbS - Nanoparticles Embedded in Polymer Matrix: Preparation and Characterization, J. Nanosci. Nanotechnol. 1 (2011) 36–39.
DOI: 10.5923/j.nn.20110102.06
Google Scholar
[12]
R. Singhal, A. Chaubey, T. Srikhirin, S. Aphiwantrakul, S. S. Pandey, B. D. Malhotra, Immobilization of glucose oxidase onto Langmuir–Blodgett films of poly-3-hexylthiophene, Curr. Appl. Phys. 3 (2003) 275–279.
DOI: 10.1016/s1567-1739(02)00215-8
Google Scholar
[13]
A. Aoki, S. Fukuyama, Organic thin film solar cell composed of hetero-deposited Langmuir-Blodgett films, Electrochemistry (2012) 178–180.
DOI: 10.5796/electrochemistry.78.178
Google Scholar
[14]
F. H. Naning, S. A. Malik and F. L. Supian, Hybrid conjugated polymer/quantum dots thin films for electronics application, Electronics Design, Systems and Applications (ICEDSA), 2012 IEEE International Conference on, 14–17.
DOI: 10.1109/icedsa.2012.6507783
Google Scholar
[15]
M. C Petty, Langmuir-Blodgett Film: An Introduction, Cambridge University Press, (1996).
Google Scholar
[16]
S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A. J. Heeger, M. Surin, R. Lazzaroni, Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films, J. Appl. Phys 100 (2006) 114503–114508.
DOI: 10.1063/1.2400796
Google Scholar
[17]
P. Schilinsky, C. Waldauf, J. Hauch, C. J. Brabec, Simulation of light intensity dependent current characteristics of polymer solar cells, J. Appl. Phys. 95 (2004) 2816–2819.
DOI: 10.1063/1.1646435
Google Scholar
[18]
X.M. Yang, G.M. Wang, Z.H. Lu, Characterization of CdS nanoparticles formed and aggregated in stearic acid Langmuir-Blodgetts films by atomic force microscopy, Supramol. Sci. 5 (1998) 549–552.
DOI: 10.1016/s0968-5677(98)00072-8
Google Scholar
[19]
J. Yang, A. Tang, R. Zhou, J. Xue, Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells, Sol. Energy Mater. Sol. Cells 95 (2011) 476–482.
DOI: 10.1016/j.solmat.2010.09.005
Google Scholar
[20]
I. Riedel, V. Dyakonov, Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices, Phys. Status Solidi A, 201 (2004) 1332–1341.
DOI: 10.1002/pssa.200404333
Google Scholar
[21]
D. Bi, F. Wu, W. Yue, Q. Qu, Q. Cui, Z. Qiu, C. Liu, W. Shen, M. Wang, Improved performance of MEH-PPV/ZnO solar cells by addition of lithium salt, Solar Energy, 85 (2011) 2819–2825.
DOI: 10.1016/j.solener.2011.08.016
Google Scholar
[22]
C. S. Ho, E. L. Huang, W. C. Hsu, C. S. Lee1, Y. N. Lai, W. H. Lai, Effects of annealing on polymer solar cells with high polythiophene–fullerene concentrations, Jpn. J. Appl. Phys. 50 (2011) 04DK21.
DOI: 10.1143/jjap.50.04dk21
Google Scholar
[23]
G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), J. Appl. Phys. 98 (2005) 043704.
DOI: 10.1063/1.2008386
Google Scholar