In Situ Cadmium Suflide Synthesis in Polymer Thin Film for Solar Cells Application

Article Preview

Abstract:

Cadmium sulfide (CdS) were synthesised directly in the active layer of solar cell by mixing regioregular poly (3-hexylthiophene-2,5-diyl) or P3HT with stearic acid, and exposed to hydrogen sulfide gas. The exposure times to hydrogen sulfide gas were varied and the isotherm of P3HT:Stearic acid obtained show that the presence of cadmium ions in the subphase changes the gas-liquid-solid transformation profile. UV-Vis-NIR results indicated that exposure to hydrogen sulfide gas created CdS particles resulting in wider absorption spectra. The exposed P3HT:SA active layer exhibit high resistance that affects short circuit current density and open circuit voltage of the solar cells device. Keywords: CdS, P3HT, Thin Film, Angle Lifting Deposition, Solar Cells

You might also be interested in these eBooks

Info:

Periodical:

Pages:

625-630

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J-S. Yang, T. M. Swager, Porous Shape Persistent Fluorescent Polymer Films: An approach to TNT sensory materials, J. Am. Chem. Soc. 120 (1998) 532 –5322.

DOI: 10.1021/ja9742996

Google Scholar

[2] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science, 295 (2002) 2425–2427.

DOI: 10.1126/science.1069156

Google Scholar

[3] M. Haridas, S. Srivastava, J.K. Basu, Tunable variation of optical properties of polymer capped gold nanoparticles, EPJ D, 49 (2008) 93–100.

DOI: 10.1140/epjd/e2008-00135-x

Google Scholar

[4] K. Takanezawa, K. Tajima, K. Hashimoto, Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer, Appl. Phys. Lett. 93 (2008) 063308 – 063310.

DOI: 10.1063/1.2972113

Google Scholar

[5] D.C. Olson, Y.J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J.A. Voigt, J.W.P. Hsu, Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices, J. Phys. Chem. C, 111 (2007).

DOI: 10.1021/jp0757816

Google Scholar

[6] Q. Dong, W. Yu, Z. Li, S. Yao, X. Zhang, B. Yang, C. Im, W. Tian, All-water-solution processed solar cells based on PPV and TiO2 nanocrystals, Sol. Energy Mater. Sol. Cells, 104 (2012) 75–80.

DOI: 10.1016/j.solmat.2012.04.024

Google Scholar

[7] A.H. Reshak, M.M. Shahimin, N. Juhari, R. Vairavan, Photovoltaic characteristics of hybrid MEH-PPV-nanoparticles compound, Curr. App. Phys. 13 (2013) 1894e1898.

DOI: 10.1016/j.cap.2013.07.023

Google Scholar

[8] H.J. Lin, S. Vedraine, J. L. Rouzo, S. H. Chen, F. Flory, C. C. Lee, Optical properties of quantum dots layers: Application to photovoltaic solar cells, Sol. Energy Mater. Sol. Cells, 117 (2013) 652–656.

DOI: 10.1016/j.solmat.2012.12.005

Google Scholar

[9] M. D. Goodman, J. Xu, J. Wang, Z. Lin, Semiconductor conjugated polymer−quantum dot nanocomposites at the air/water interface and their photovoltaic performance, Chem. Mater. 21 (2009) 934–938.

DOI: 10.1021/cm803248j

Google Scholar

[10] M.T. Khan, A. Kaur, S.K. Dhawan, S. Chand, Hole transport mechanism in organic/inorganic hybrid system based on in-situ grown cadmium telluride nanocrystals in poly(3-hexylthiophene), J. Appl. Phys. 109 (2011) 114509.

DOI: 10.1063/1.3594647

Google Scholar

[11] P. K. Singh, S. K. Tomar, B. Bhattacharya, PbS - Nanoparticles Embedded in Polymer Matrix: Preparation and Characterization, J. Nanosci. Nanotechnol. 1 (2011) 36–39.

DOI: 10.5923/j.nn.20110102.06

Google Scholar

[12] R. Singhal, A. Chaubey, T. Srikhirin, S. Aphiwantrakul, S. S. Pandey, B. D. Malhotra, Immobilization of glucose oxidase onto Langmuir–Blodgett films of poly-3-hexylthiophene, Curr. Appl. Phys. 3 (2003) 275–279.

DOI: 10.1016/s1567-1739(02)00215-8

Google Scholar

[13] A. Aoki, S. Fukuyama, Organic thin film solar cell composed of hetero-deposited Langmuir-Blodgett films, Electrochemistry (2012) 178–180.

DOI: 10.5796/electrochemistry.78.178

Google Scholar

[14] F. H. Naning, S. A. Malik and F. L. Supian, Hybrid conjugated polymer/quantum dots thin films for electronics application, Electronics Design, Systems and Applications (ICEDSA), 2012 IEEE International Conference on, 14–17.

DOI: 10.1109/icedsa.2012.6507783

Google Scholar

[15] M. C Petty, Langmuir-Blodgett Film: An Introduction, Cambridge University Press, (1996).

Google Scholar

[16] S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A. J. Heeger, M. Surin, R. Lazzaroni, Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films, J. Appl. Phys 100 (2006) 114503–114508.

DOI: 10.1063/1.2400796

Google Scholar

[17] P. Schilinsky, C. Waldauf, J. Hauch, C. J. Brabec, Simulation of light intensity dependent current characteristics of polymer solar cells, J. Appl. Phys. 95 (2004) 2816–2819.

DOI: 10.1063/1.1646435

Google Scholar

[18] X.M. Yang, G.M. Wang, Z.H. Lu, Characterization of CdS nanoparticles formed and aggregated in stearic acid Langmuir-Blodgetts films by atomic force microscopy, Supramol. Sci. 5 (1998) 549–552.

DOI: 10.1016/s0968-5677(98)00072-8

Google Scholar

[19] J. Yang, A. Tang, R. Zhou, J. Xue, Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells, Sol. Energy Mater. Sol. Cells 95 (2011) 476–482.

DOI: 10.1016/j.solmat.2010.09.005

Google Scholar

[20] I. Riedel, V. Dyakonov, Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices, Phys. Status Solidi A, 201 (2004) 1332–1341.

DOI: 10.1002/pssa.200404333

Google Scholar

[21] D. Bi, F. Wu, W. Yue, Q. Qu, Q. Cui, Z. Qiu, C. Liu, W. Shen, M. Wang, Improved performance of MEH-PPV/ZnO solar cells by addition of lithium salt, Solar Energy, 85 (2011) 2819–2825.

DOI: 10.1016/j.solener.2011.08.016

Google Scholar

[22] C. S. Ho, E. L. Huang, W. C. Hsu, C. S. Lee1, Y. N. Lai, W. H. Lai, Effects of annealing on polymer solar cells with high polythiophene–fullerene concentrations, Jpn. J. Appl. Phys. 50 (2011) 04DK21.

DOI: 10.1143/jjap.50.04dk21

Google Scholar

[23] G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), J. Appl. Phys. 98 (2005) 043704.

DOI: 10.1063/1.2008386

Google Scholar