Effect of Morphology on SnO2/MWCNT-Based DSSC Performance with Various Annealing Temperatures

Article Preview

Abstract:

Development of tin/multi-walled carbon nanotube (SnO2/MWCNTs) thin films were prepared by sol-gel method. The synthesis of tin oxide (SnO2) was carried out by dissolving tin (II) chloride (SnCl3) in a solvent of 2-methoxyethanol. Different annealing temperatures of 400 °C, 450 °C, 500 °C, 550 °C and 600 °C were proposed in this study. The changes in the structural properties were analyzed by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM) analysis. AFM results indicated very rough surface area of SnO2/MWCNTs thin films where roughness values increased linearly from 1.8 nm to 11 nm by increasing the annealing temperatures from 400 °C to 600 °C. The SnO2/MWCNTs-based DSSC exhibited good photovoltaic performance with power conversion efficiency (η), photocurrent density (Jsc), open circuit voltage (Voc) and fill factor (FF) of 0.62 %, 5.6 mA cm-2, 0.55 V and 0.65 respectively. The obtained structural and photovoltaic performance analysis was proposed as a suitable benchmark for Sn/MWCNTs based dye-sensitized solar cell (DSSC) application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

649-654

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] Y. Jo, C.L. Jung, J. Lim, B.H. Kim, C.H. Han, J. Kim, S. Kim, D. Kim, Y. Jun, A novel dye coating method for N719 dye-sensitized solar cells, Electrochim. Acta 66 (2012) 121-125.

DOI: 10.1016/j.electacta.2012.01.055

Google Scholar

[3] Y. Lee, J. Chae, M. Kang, Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol-gel and solvothermal methods, J. Ind. Eng. Chem. 16 (2010) 609-614.

DOI: 10.1016/j.jiec.2010.03.008

Google Scholar

[4] N. Karst, G. Rey, B. Doisneau, H. Roussel, R. Deshayes, V. Consonni, C. Ternon, D. Bellet, Fabrication and characterization of a composite ZnO semiconductor as electron transporting layer in dye-sensitized solar cells, Mat. Sci. Eng. B 176 (2011).

DOI: 10.1016/j.mseb.2011.02.009

Google Scholar

[5] J.H. Lee, N.G. Park, Y.J. Shin, Nano grain SnO2 electrodes for high conversion efficiency SnO2-DSSC, Sol. Energ. Mat. Sol. C. 95 (2011) 179-183.

DOI: 10.1016/j.solmat.2010.04.027

Google Scholar

[6] J. Qian, P. Liu, Y. Jiang, Y. Cao, X. Ai, H. Yang, TiO2-coated multilayerd SnO2 hollow microspheres for dye-sensitized solar cells, Adv. Mater. 21 (2009) 3663-3667.

DOI: 10.1002/adma.200900525

Google Scholar

[7] W. Chen, Y. Qiu, Y. Zhong, K.S. Wong, S. Yang, High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods, J. Phys. Chem. A 114 (2009) 3127-3138.

DOI: 10.1021/jp908747z

Google Scholar

[8] F.J. Arlinghaus, Energy bands in stannic oxide (SnO2), J. Phys. Chem. Solids 35 (1974) 931-935.

DOI: 10.1016/s0022-3697(74)80102-2

Google Scholar

[9] Y. Wang, X. Jiang, Xia, Y, A solution phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125 (2003) 16176-16177.

DOI: 10.1021/ja037743f

Google Scholar

[10] A. Masao, S. Noda, F. Takasaki, K. Ito, K. Sasaki, Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells, Electrochem. Solid St. 12 (2009) B119-B122.

DOI: 10.1149/1.3152325

Google Scholar

[11] L.J. Wang, C.X. Wu, Y. Ye, T.L. Guo, Fabrication and luminance properties of field emission backlight unit based on SnO2 nanowires, Mater. Sci. Forum 694 (2011) 418-422.

DOI: 10.4028/www.scientific.net/msf.694.418

Google Scholar

[12] T. Nagatomo, M. Endo, O. Omoto, Fabrication and characterization of SnO2/n-Si solar cells, Jpn. J. Appl. Phys. 18 (1979) 1103-1109.

DOI: 10.1143/jjap.18.1103

Google Scholar

[13] S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Band-edged engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires, Advanced Functional Materials 18 (2008) 2411-2418.

DOI: 10.1002/adfm.200800099

Google Scholar

[14] C. Prasittichai, J.T. Hupp, Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: significant improvements in photovoltage via Al2O3 atomic layer deposition, The Journal of Physical Chemistry Letters 1 (2010) 1611-1615.

DOI: 10.1021/jz100361f

Google Scholar

[15] S. Gubbala, H.B. Russel, H. Shah, B. Deb, J. Jasinski, H. Rypkema, M.K. Sunkara, Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells, Energy & environmental Science 2 (2009) 1302-1309.

DOI: 10.1039/b910174h

Google Scholar

[16] K.M. Lee, C.W. Hu, H.W. Chen, K.C. Ho, Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells, Sol. Energ. Mat. Sol. C. 92 (2008) 1628-1633.

DOI: 10.1016/j.solmat.2008.07.012

Google Scholar

[17] G. An, N. Na, X. Zhang, Z. Miao, S. Miao, K. Ding, Z. Liu, SnO2/Carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficienct materials for use as a chemical sensor and as the anode of a lithium-ion battery, Nanotechnology 18 (2007).

DOI: 10.1088/0957-4484/18/43/435707

Google Scholar

[18] F.L. Meng, Y. Jia, J.Y. Liu, M.Q. Li, Y.F. Sun, J.H. Liu, X.J. Huang, Nanocomposites of sub-10 nm SnO2 nanoparticles and MWCNTs for detecting of aldrin and DDT, Anal. Methods 2 (2010) 1710-1714.

DOI: 10.1039/c0ay00424c

Google Scholar

[19] A. Omar, H. Abdullah, M.A. Yarmo, S. Shaari, M.R. Taha, Morphological and electron transport studies in ZnO dye-sensitized solar cells incorporating multi-and single-walled carbon nanotubes, J. Phys. D: Appl. Phys. 46 (2013) 165503.

DOI: 10.1088/0022-3727/46/16/165503

Google Scholar

[20] M. Liberatore, F. Decker, L. Burtone, V. Zardetto, T. Mm Brown, A. Reale, A. Di Carlo, Using EIS for diagnosis of dye-sensitized solar cells performance, J. Appl. Electrochem. 39 (2009) 2291-2295.

DOI: 10.1007/s10800-009-9806-5

Google Scholar