Current-Voltage Characterization of Gallium Arsenide Nanowires Using a Conductive Atomic Force Microscopy

Article Preview

Abstract:

Utilizing semiconductor nanowires for optoelectronics device requires exact knowledge of their current-voltage properties. In this report, we examine accurate on-top imaging and I-V characterization of individual vertical Gallium Arsenide Nanowires (GaAs NWs) using conductive atomic force microscopy without additional microscopy tools, thus allowing versatile application. The measured current-voltage characteristic of a single NW shows the typical performance of a Schottky contact, which caused by the contact between the metallic AFM tip and the top of NWs. The height of the Schottky barrier is dependent on the diameter of the nanowires. The linear part of the curve was used to calculate the differential resistance, which was found to be about 25 to 100 MΩ. Energy band gap for GaAs NW was found to be 1.5 eV by differential conductivity measurement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-242

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Cui, X. Duan, J. Hu, C. M. Lieber, Doping and Electrical Transport in Silicon Nanowires, J. Phys. Chem. B. 104 (2000) 5213.

DOI: 10.1021/jp0009305

Google Scholar

[2] M. Scheffler, S. Nadj-Perge, L. P. Kouwenhoven, M. T. Borgstrom, E. P. A. M. Bakkers, Diameter-dependent conductance of InAs nanowires, J. Apply. Phys. 106 (2009) 124303.

DOI: 10.1063/1.3270259

Google Scholar

[3] M. Niebelschutz, V. Cimalla, O. Ambacher, T. Machleidt, J. Ristic and E. Calleja, Electrical performance of gallium nitride nanocolumns, Physica E. 37 (2007) 200-203.

DOI: 10.1016/j.physe.2006.10.007

Google Scholar

[4] M. Rosnita, O. Zulkafli, S. Samsudi, W. Yussof, Morphological and electrical characterization of GaAs Nanowires, AIP Conference Proceeding (2009) 344-347.

Google Scholar

[5] M. Rosnita, O. Zulkafli, S. Samsudi, W. Yussof, Vapor-liquid solid mechanism using gold colloids for the growth of GaAs nanowires, Journal of Fundamental Sciences (2008) 363-367.

Google Scholar

[6] A. D.Schricker, F. M. Davidson, R.J. Wiacek and B. A. Korgel, Space charge limited currents and trap concentration in GaAs NWs, Nanotechnology 17 (2006) 2681-2688.

DOI: 10.1088/0957-4484/17/10/040

Google Scholar

[7] X. Zhou, S. A. Dayeh, D. Aplin, D. Wang and E. T. Yu, Scanned electrical probe characterization of carrier transport behavior in InAs nanowires, J. Vac. Sci. Technol. B 24 (2006) 2036-2040.

DOI: 10.1116/1.2213267

Google Scholar

[8] T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391 (1998) 62-68.

DOI: 10.1038/34145

Google Scholar

[9] Z. Zhang and B. Bullemer, Normalised differential conductivity and surface density of states in stimulated tunnelling spectroscopy, Thin Solid Films 264 (1995) 277 – 281.

DOI: 10.1016/0040-6090(94)05827-x

Google Scholar

[10] A. G. Baca and C. I. H. Ashby, Fabrication of GaAs devices, 1 st edition, The Institution of Electrical Engineers, London, UK, 2005.

Google Scholar

[11] L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Y. Kim, J. J. Hannah, H. H. Tan and C. Jagadish C, Temperature dependence of photoluminescence from single-core shell GaAs-AlGaAs NWs, Applied Physics Letters 89 (2006) 173126.

DOI: 10.1063/1.2364885

Google Scholar

[12] G. P. Morgan, K. Ogawa, K. Hiruma, H. Kakibayashi and T. Katsuyama, Optical Characterisation of GaAs quantum wire microcrystal, Solid State Communication 80 (1991) 235-238.

DOI: 10.1016/0038-1098(91)90188-2

Google Scholar