Ultra-Thin Body and Buried Oxide (UTBB) SOI MOSFETs on Suppression of Short-Channel Effects (SCEs): A Review

Article Preview

Abstract:

This paper reviews the different UTBB SOI MOSFET structures and their superiority in suppressing short-channel effects (SCEs). As the gate length (Lg), buried oxide thickness (TBOX) and silicon thickness (Tsi) are scaled down, the severity of SCEs becomes significant. The different UTBB SOI MOSFET device structures introduced to suppress these SCEs are discussed. The effectiveness of these structures in managing the associated SCEs such as drain-induced barrier lowering (DIBL), subthreshold swing (SS) and off-state leakage current (Ioff) is also presented. Further evaluations are made on other competing CMOS technologies such as multigate MOSFETs (FinFETs, three-gates, four-gates) and junctionless transistor in controlling the SCEs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-261

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Cristoloveanu, Silicon on insulator technologies and devices: from present to future, Solid. State. Electron., 45 (2001) 1403–1411.

DOI: 10.1016/s0038-1101(00)00271-9

Google Scholar

[2] G. G. Shahidi, SO1 Technology for the GHz Era, IBM J. Res. Dev., 46 (2001) 11–14.

Google Scholar

[3] J.-P. Colinge, Recent Advances and Trends in SOI CMOS Technology, Proc. Eur. Solid-State Device Res. Conf., 2 (1996).

Google Scholar

[4] N. Kistler and J. Woo, Scaling Behaviour of Sub-micron MOSFETs on Fully-Depleted SOI, Solid State Electron., 39 (1996) 445–454.

DOI: 10.1016/0038-1101(95)00168-9

Google Scholar

[5] T. Numata and S.-I. Takagi, Device design for subthreshold slope and threshold voltage control in sub-100-nm fully depleted SOI MOSFETs, IEEE Trans. Electron Devices, 51 (2004) 2161–2167. 2004.

DOI: 10.1109/ted.2004.839760

Google Scholar

[6] C. Fenouillet-Beranger et. al, FDSOI devices with thin BOX and ground plane integration for 32nm node and below, Solid. State. Electron., 53 (2009) 730–734.

DOI: 10.1016/j.sse.2009.02.009

Google Scholar

[7] A. Chaudhry and M. J. Kumar, Controlling Short-channel Effects in Deep Submicron SOI MOSFETs for Improved Reliability : A Review, IEEE Trans Device Mater. Reliab., 4 (2004) 99–109.

DOI: 10.1109/tdmr.2004.824359

Google Scholar

[8] T. Tsuchiya et. al, Three Mechanisms Determining Short-Channel Effects in Fully-Depleted SOI MOSFET's, IEEE, 45 (1998) 1116–1121.

DOI: 10.1109/16.669554

Google Scholar

[9] R.Yan et. al, Back-gate Mirror Doping for Fully Depleted Planar SOI Transistors with Thin Buried Oxide, VLSI Technology, System and Applications, (2010) 76–77.

DOI: 10.1109/vtsa.2010.5488939

Google Scholar

[10] M. Saremi et. al, Process Variation Study of Ground Plane SOI MOSFET, 2nd Asia Symposium on Quality Electronic Design, 6(2010) 66–69.

DOI: 10.1109/asqed.2010.5548155

Google Scholar

[11] C. Fenouillet-Beranger et. al, Impact of a 10nm ultra-thin BOX (UTBOX) and ground plane on FDSOI devices for 32nm node and below, Solid. State. Electron., 54 (2010) 849–854.

DOI: 10.1016/j.sse.2010.04.009

Google Scholar

[12] H. P. Wong et. al, Device Design Considerations for Double-Gate, Ground-Plane, and Single-Gated Ultra-Thin SO1 MOSFET's at the 25 nm Chiannel Length Generation, IEDM Technical Digest, (1998) 407–410.

DOI: 10.1109/iedm.1998.746385

Google Scholar

[13] L. Grenouille et. al, UTBB FDSOI transistors with dual STI for a multi-V t strategy at 20nm node and below, IEDM, (2012) 64–67.

Google Scholar

[14] C. Sampedro, F. Gámiz, and A. Godoy, On the extension of ET-FDSOI roadmap for 22nm node and beyond, Solid. State. Electron., 90 (2013) 23–27.

DOI: 10.1016/j.sse.2013.02.057

Google Scholar

[15] M. J. Kumar and M. Siva, The Ground Plane in Buried Oxide for Controlling Short-Channel Effects in Nanoscale SOI MOSFETs, IEEE Trans. Electron Devices, 55 (2008) 1554–1557.

DOI: 10.1109/ted.2008.922859

Google Scholar

[16] H. Makiyama et. al, Novel Local Ground-Plane Silicon on Thin BOX ( SOTB ) for Improving Short-Channel-Effect Immunity, Euro SOI, 2 (2012) 27–28.

Google Scholar

[17] R. Yan et. al, LDD and Back-Gate Engineering for Fully Depleted Planar SOI Transistors with Thin Buried Oxide, IEEE Transactions on Electron Devices, 57 (2010) 1319–1326.

DOI: 10.1109/ted.2010.2046097

Google Scholar

[18] K. Cheng et. al, Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Featuring Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain, 2009 Symposium on VLSI Technology Digest of Technical Papers, (2009) 212-213.

Google Scholar

[19] T. Nicoletti et. al, Advantages of different source/drain engineering on scaled UTBOX FDSOI nMOSFETs at high temperature operation, Solid State Electron., 91 (2014) 53–58.

DOI: 10.1016/j.sse.2013.09.012

Google Scholar

[20] T. Nicoletti et. al, The impact of gate length scaling on UTBOX FDSOI devices: The digital/analog performance of extension-less structures, 2012 13th Int. Conf. Ultim. Integr. Silicon, (2012) 121–124.

DOI: 10.1109/ulis.2012.6193372

Google Scholar

[21] V. Trivedi, J. G. Fossum, and M. M. Chowdhury, Nanoscale FinFETs With Gate-Source/Drain Underlap, IEEE Trans. Electron Devices, 52 (2005) 56–62.

DOI: 10.1109/ted.2004.841333

Google Scholar

[22] D. Ranka et. al, Performance Analysis of FD-SOI MOSFET with Different Gate Spacer Dielectric, Int. J. Comput. Appl., 18 (2011) 22–27.

DOI: 10.5120/2280-2952

Google Scholar

[23] M. Ma et. al, Impact of High- κ Offset Spacer in 65-nm Node SOI Devices, IEEE Electron Device Lett., 28 (2007) 238–241.

DOI: 10.1109/led.2007.891282

Google Scholar

[24] K. Oshima et. al, Advanced SOI MOSFETs with buried alumina and ground plane: self-heating and short-channel effects, Solid. State. Electron., 48 (2004) 907–917.

DOI: 10.1016/j.sse.2003.12.026

Google Scholar

[25] N. Bresson et. al, Integration of buried insulators with high thermal conductivity in SOI MOSFETs: Thermal properties and short channel effects, Solid. State. Electron., 49 (2005) 1522–1528.

DOI: 10.1016/j.sse.2005.07.015

Google Scholar

[26] M. J. H. Van Dal et. al, Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography, 2007 Symp. VLSI Technol. Dig. Tech. Pap., (2007).

DOI: 10.1109/vlsit.2007.4339747

Google Scholar

[27] V. Subramanian et. al, Planar Bulk MOSFET S Versus FinFETs : An Analog / RF Perspective, IEEE Trans. Electron Devices, 53 (2006) 3071–3079.

DOI: 10.1109/ted.2006.885649

Google Scholar

[28] N. Singh et. al, High-performance fully depleted silicon nanowire (diameter < 5 nm) gate-all-around CMOS devices, IEEE Electron Device Lett., 27 (2006) 383–386.

DOI: 10.1109/led.2006.873381

Google Scholar

[29] S. Bangsaruntip et al, High Performance and Highly Uniform Gate-All-Around Silicon Nanowire MOSFETs with Wire Size Dependent Scaling Epi, IEDM, (2009) 297–300.

DOI: 10.1109/iedm.2009.5424364

Google Scholar

[30] J.-P. Colinge et. al, Nanowire transistors without junctions., Nat. Nanotechnol., 5 (2010) 225–9.

Google Scholar

[31] J. P. Colinge et. al, Junctionless Nanowire Transistor (JNT): Properties and design guidelines, Solid. State. Electron., 65–66 (2011) 33–37.

DOI: 10.1016/j.sse.2011.06.004

Google Scholar

[32] C.-Y. Chen, J.-T. Lin, and M.-H. Chiang, Performance optimization for the sub-22nm fully depleted SOI nanowire transistors, Solid. State. Electron., 92 (2014) 57–62.

DOI: 10.1016/j.sse.2013.11.002

Google Scholar

[33] R. Trevisoli et. al, Substrate Bias Influence on the Operation of Junctionless Nanowire Transistors," IEEE Trans. Electron Devices, 61 (2014) 1575–1582.

DOI: 10.1109/ted.2014.2309334

Google Scholar

[34] C.-H. Park et. al, Electrical characteristics of 20-nm junctionless Si nanowire transistors, Solid. State. Electron., 73 (2012) 7–10.

Google Scholar

[35] O. Faynot et. al, Planar Fully Depleted SOI Technology : a powerful architecture for the 20nm node and beyond, IEEE Electron Devices Meet., (2010) 50–53.

Google Scholar

[36] O. Weber et. al, High Immunity to Threshold Voltage Variability in Undoped Ultra-Thin FDSOI MOSFETs and its Physical Understanding, IEEE Electron Devices Meet., (2008) 10–13.

DOI: 10.1109/iedm.2008.4796663

Google Scholar

[37] L. Clavelier et. al, Engineered Substrates for Future More Moore and More Than Moore Integrated Devices, IEEE Electron Devices Meet., (2010) 42–45.

DOI: 10.1109/iedm.2010.5703285

Google Scholar