[1]
S. Cristoloveanu, Silicon on insulator technologies and devices: from present to future, Solid. State. Electron., 45 (2001) 1403–1411.
DOI: 10.1016/s0038-1101(00)00271-9
Google Scholar
[2]
G. G. Shahidi, SO1 Technology for the GHz Era, IBM J. Res. Dev., 46 (2001) 11–14.
Google Scholar
[3]
J.-P. Colinge, Recent Advances and Trends in SOI CMOS Technology, Proc. Eur. Solid-State Device Res. Conf., 2 (1996).
Google Scholar
[4]
N. Kistler and J. Woo, Scaling Behaviour of Sub-micron MOSFETs on Fully-Depleted SOI, Solid State Electron., 39 (1996) 445–454.
DOI: 10.1016/0038-1101(95)00168-9
Google Scholar
[5]
T. Numata and S.-I. Takagi, Device design for subthreshold slope and threshold voltage control in sub-100-nm fully depleted SOI MOSFETs, IEEE Trans. Electron Devices, 51 (2004) 2161–2167. 2004.
DOI: 10.1109/ted.2004.839760
Google Scholar
[6]
C. Fenouillet-Beranger et. al, FDSOI devices with thin BOX and ground plane integration for 32nm node and below, Solid. State. Electron., 53 (2009) 730–734.
DOI: 10.1016/j.sse.2009.02.009
Google Scholar
[7]
A. Chaudhry and M. J. Kumar, Controlling Short-channel Effects in Deep Submicron SOI MOSFETs for Improved Reliability : A Review, IEEE Trans Device Mater. Reliab., 4 (2004) 99–109.
DOI: 10.1109/tdmr.2004.824359
Google Scholar
[8]
T. Tsuchiya et. al, Three Mechanisms Determining Short-Channel Effects in Fully-Depleted SOI MOSFET's, IEEE, 45 (1998) 1116–1121.
DOI: 10.1109/16.669554
Google Scholar
[9]
R.Yan et. al, Back-gate Mirror Doping for Fully Depleted Planar SOI Transistors with Thin Buried Oxide, VLSI Technology, System and Applications, (2010) 76–77.
DOI: 10.1109/vtsa.2010.5488939
Google Scholar
[10]
M. Saremi et. al, Process Variation Study of Ground Plane SOI MOSFET, 2nd Asia Symposium on Quality Electronic Design, 6(2010) 66–69.
DOI: 10.1109/asqed.2010.5548155
Google Scholar
[11]
C. Fenouillet-Beranger et. al, Impact of a 10nm ultra-thin BOX (UTBOX) and ground plane on FDSOI devices for 32nm node and below, Solid. State. Electron., 54 (2010) 849–854.
DOI: 10.1016/j.sse.2010.04.009
Google Scholar
[12]
H. P. Wong et. al, Device Design Considerations for Double-Gate, Ground-Plane, and Single-Gated Ultra-Thin SO1 MOSFET's at the 25 nm Chiannel Length Generation, IEDM Technical Digest, (1998) 407–410.
DOI: 10.1109/iedm.1998.746385
Google Scholar
[13]
L. Grenouille et. al, UTBB FDSOI transistors with dual STI for a multi-V t strategy at 20nm node and below, IEDM, (2012) 64–67.
Google Scholar
[14]
C. Sampedro, F. Gámiz, and A. Godoy, On the extension of ET-FDSOI roadmap for 22nm node and beyond, Solid. State. Electron., 90 (2013) 23–27.
DOI: 10.1016/j.sse.2013.02.057
Google Scholar
[15]
M. J. Kumar and M. Siva, The Ground Plane in Buried Oxide for Controlling Short-Channel Effects in Nanoscale SOI MOSFETs, IEEE Trans. Electron Devices, 55 (2008) 1554–1557.
DOI: 10.1109/ted.2008.922859
Google Scholar
[16]
H. Makiyama et. al, Novel Local Ground-Plane Silicon on Thin BOX ( SOTB ) for Improving Short-Channel-Effect Immunity, Euro SOI, 2 (2012) 27–28.
Google Scholar
[17]
R. Yan et. al, LDD and Back-Gate Engineering for Fully Depleted Planar SOI Transistors with Thin Buried Oxide, IEEE Transactions on Electron Devices, 57 (2010) 1319–1326.
DOI: 10.1109/ted.2010.2046097
Google Scholar
[18]
K. Cheng et. al, Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Featuring Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain, 2009 Symposium on VLSI Technology Digest of Technical Papers, (2009) 212-213.
Google Scholar
[19]
T. Nicoletti et. al, Advantages of different source/drain engineering on scaled UTBOX FDSOI nMOSFETs at high temperature operation, Solid State Electron., 91 (2014) 53–58.
DOI: 10.1016/j.sse.2013.09.012
Google Scholar
[20]
T. Nicoletti et. al, The impact of gate length scaling on UTBOX FDSOI devices: The digital/analog performance of extension-less structures, 2012 13th Int. Conf. Ultim. Integr. Silicon, (2012) 121–124.
DOI: 10.1109/ulis.2012.6193372
Google Scholar
[21]
V. Trivedi, J. G. Fossum, and M. M. Chowdhury, Nanoscale FinFETs With Gate-Source/Drain Underlap, IEEE Trans. Electron Devices, 52 (2005) 56–62.
DOI: 10.1109/ted.2004.841333
Google Scholar
[22]
D. Ranka et. al, Performance Analysis of FD-SOI MOSFET with Different Gate Spacer Dielectric, Int. J. Comput. Appl., 18 (2011) 22–27.
DOI: 10.5120/2280-2952
Google Scholar
[23]
M. Ma et. al, Impact of High- κ Offset Spacer in 65-nm Node SOI Devices, IEEE Electron Device Lett., 28 (2007) 238–241.
DOI: 10.1109/led.2007.891282
Google Scholar
[24]
K. Oshima et. al, Advanced SOI MOSFETs with buried alumina and ground plane: self-heating and short-channel effects, Solid. State. Electron., 48 (2004) 907–917.
DOI: 10.1016/j.sse.2003.12.026
Google Scholar
[25]
N. Bresson et. al, Integration of buried insulators with high thermal conductivity in SOI MOSFETs: Thermal properties and short channel effects, Solid. State. Electron., 49 (2005) 1522–1528.
DOI: 10.1016/j.sse.2005.07.015
Google Scholar
[26]
M. J. H. Van Dal et. al, Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography, 2007 Symp. VLSI Technol. Dig. Tech. Pap., (2007).
DOI: 10.1109/vlsit.2007.4339747
Google Scholar
[27]
V. Subramanian et. al, Planar Bulk MOSFET S Versus FinFETs : An Analog / RF Perspective, IEEE Trans. Electron Devices, 53 (2006) 3071–3079.
DOI: 10.1109/ted.2006.885649
Google Scholar
[28]
N. Singh et. al, High-performance fully depleted silicon nanowire (diameter < 5 nm) gate-all-around CMOS devices, IEEE Electron Device Lett., 27 (2006) 383–386.
DOI: 10.1109/led.2006.873381
Google Scholar
[29]
S. Bangsaruntip et al, High Performance and Highly Uniform Gate-All-Around Silicon Nanowire MOSFETs with Wire Size Dependent Scaling Epi, IEDM, (2009) 297–300.
DOI: 10.1109/iedm.2009.5424364
Google Scholar
[30]
J.-P. Colinge et. al, Nanowire transistors without junctions., Nat. Nanotechnol., 5 (2010) 225–9.
Google Scholar
[31]
J. P. Colinge et. al, Junctionless Nanowire Transistor (JNT): Properties and design guidelines, Solid. State. Electron., 65–66 (2011) 33–37.
DOI: 10.1016/j.sse.2011.06.004
Google Scholar
[32]
C.-Y. Chen, J.-T. Lin, and M.-H. Chiang, Performance optimization for the sub-22nm fully depleted SOI nanowire transistors, Solid. State. Electron., 92 (2014) 57–62.
DOI: 10.1016/j.sse.2013.11.002
Google Scholar
[33]
R. Trevisoli et. al, Substrate Bias Influence on the Operation of Junctionless Nanowire Transistors," IEEE Trans. Electron Devices, 61 (2014) 1575–1582.
DOI: 10.1109/ted.2014.2309334
Google Scholar
[34]
C.-H. Park et. al, Electrical characteristics of 20-nm junctionless Si nanowire transistors, Solid. State. Electron., 73 (2012) 7–10.
Google Scholar
[35]
O. Faynot et. al, Planar Fully Depleted SOI Technology : a powerful architecture for the 20nm node and beyond, IEEE Electron Devices Meet., (2010) 50–53.
Google Scholar
[36]
O. Weber et. al, High Immunity to Threshold Voltage Variability in Undoped Ultra-Thin FDSOI MOSFETs and its Physical Understanding, IEEE Electron Devices Meet., (2008) 10–13.
DOI: 10.1109/iedm.2008.4796663
Google Scholar
[37]
L. Clavelier et. al, Engineered Substrates for Future More Moore and More Than Moore Integrated Devices, IEEE Electron Devices Meet., (2010) 42–45.
DOI: 10.1109/iedm.2010.5703285
Google Scholar