Electrical Conductivity and Structural Studies on the Binary Solid State Li2WO4-LiI-Al2O3 Electrolyte

Article Preview

Abstract:

The binary solid electrolyte Li2WO4-LiI with incorporation of nanosize Al2O3 was prepared in solid state reaction and characterized by Electrical Impedance Spectroscopy (EIS), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. Maximum electrical conductivity of 3.35x10-3 Scm-1 was recorded for the sample containing 20 wt. % of LiI. Enhancement of electrical conductivity up to 5.8x10-3Scm-1 was achieved when 0.5 wt. % of Al2O3 was added into the optimum composition of the binary Li2WO4-LiI system. Tetrahedral structure of WO4 that appear at wave number of 906 cm-1 and 955 cm-1 in the FTIR spectroscopy confirmed. The existence of conducting pathway for migrations of Li ions in system that contributes to high electrical conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-327

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ohta, T. Kobayashi and T. Asaoka (2011). High lithium ionic conductivity in the garnet-type oxide Li7-x La3(Zr2-x, Nbx)O12 (x=0-2). Journal of Power Sources, 196.pp.3342-3345

DOI: 10.1016/j.jpowsour.2010.11.089

Google Scholar

[2] M. Duclot and J. Souquet (2001). Glassy materials for lithium batteries: electrochemical properties and devices performances. Journal of Power and Sources,97-98.pp.610-615

DOI: 10.1016/s0378-7753(01)00641-3

Google Scholar

[3] T. Sekiya, N. Mochida and S. Ogawa (1994). Structural study of WO3-TeO2 glasses. Journal of Non-Crystalline Solids, 176.pp.105-115

DOI: 10.1016/0022-3093(94)90067-1

Google Scholar

[4] A.H. Ahmad and A.K. Arof (2004). XRD, Conductivity and FTIR Studies on LiI-Li2WO4-Li3PO4 Prepared by Low Temperature Sintering, Ionics, 10

DOI: 10.1007/bf02382817

Google Scholar

[5] N.H. Kaus and A.H. Ahmad. (2009). Conductivity Studies and Ion Transport Mechanism in LiI-Li3PO4 Solid Electrolyte, Journal of Ionics, 15.pp.197-201

DOI: 10.1007/s11581-008-0252-x

Google Scholar

[6] J. Kohler, N. Imanaka and G. Adachi (1999). Rare earth conduction in M2(WO4)3-Al2O3 (m=Sc, Lu) composites. Solid State Ionics, 122.pp.173-182

DOI: 10.1016/s0167-2738(99)00034-x

Google Scholar

[7] C. Zhenzu, L. Zhanqiang, S. Junkang, H. Fuqiang, Y. Jianhua and W. Yaoming (2008). Lithium ionic conductivity in LiI-Li2S-La2O2Sm (m=1,2) composite electrolyte by solid state reaction. Solid State Ionics, 179.pp.1776-1778

DOI: 10.1016/j.ssi.2008.01.072

Google Scholar

[8] W. Zhaoxiang, H. Yongsheng and C. Liquan (2005). Some studies on electrolytes for lithium ion batteries. Journal of Power Sources, 146.pp.51-57

Google Scholar

[9] W.O. George and P. S. Mc Intyre, in "Infrared Spectroscopy", D. J. Mowthorpe (ed), John Wiley & Sons (1990)

Google Scholar

[10] N.M. Sammes, G. Tompsett, Y. Zhang and A. Watanabe-11th International Conference on Solid State Ionics, Honolulu, (1997) p.380, paper D29.

Google Scholar

[11] T. Sekiya, N. Mochida, S. Ogawa, J. Non-Crystalline Solids 176 (1994) 105-115

Google Scholar

[12] E. Cazzanelli, L. Papalino, A. Pennisi, F. Simone, Electrochimica Acta 46 (2001) 1937-1944

DOI: 10.1016/s0013-4686(01)00363-2

Google Scholar